Korean Journal of Chemical Engineering

, Volume 36, Issue 6, pp 981–987 | Cite as

High strength Cu foil without self-annealing prepared by 2M5S-PEG-SPS

  • Anna Lee
  • Myung Jun Kim
  • Seunghoe Choe
  • Jae Jeong KimEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)


Cu foil has widely been used as a current collector for Li ion batteries due to its excellent electrical, mechanical properties and facile fabrication process, but improvement in the properties of Cu foil is necessary for continuous development of the Li ion battery. Thinner and stronger Cu foil is being demanded, and the self-annealing of Cu foil needs to be prevented for effective control of properties as well as higher productivity of the fabrication process. We investigated the effects of three additives, 2-mercapto-5-benzimidazole sulfonic acid (2M5S), polyethylene glycol (PEG), and bis (3-sulfopropyl) disulfide (SPS), on the mechanical properties and self-annealing phenomenon of Cufoil. Cu foil deposited with PEG shows the highest tensile strength and elongation after electrodeposition; however, it experiences severe self-annealing for 48 hrs. On the contrary, 2M5S and SPS reduce the self-annealing phenomenon with their incorporation into Cu film, while the initial mechanical properties are worse than those with PEG. Therefore, combinations of additives are investigated to obtain both higher mechanical properties and excellent resistance against self-annealing. Finally, 10 µm-thick Cu foil having a tensile strength of 673 MPa and an elongation of 2.9% without self-annealing can be fabricated using PEG-2M5S-SPS.


Cu Electrodeposition Cu Foil Organic Additive Mechanical Property Self-annealing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Scrosati and J. Garche, J. Power Sources, 195, 2419 (2010).CrossRefGoogle Scholar
  2. 2.
    V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011).CrossRefGoogle Scholar
  3. 3.
    L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, J. Power Sources, 226, 272 (2013).CrossRefGoogle Scholar
  4. 4.
    S.-W. Kang, H.-M. Xie, W. Zhang, J.-P. Zhang, Z. Ma, R.-S. Wang and X.-L. Wu, Electrochim. Acta, 176, 604 (2015).CrossRefGoogle Scholar
  5. 5.
    T. Kubo, K. Fujishima and N. Yamamoto, U.S. Patent, 5,326,455 (1994).Google Scholar
  6. 6.
    N. Takahashi and Y. Hirasawa, U.S. Patent, 20,020,015,833 (2001).Google Scholar
  7. 7.
    C.-C. Lin, C.-H. Yen, S.-C. Lin, C.-C. Hu and W.-P. Dow, J. Electrochem. Soc., 164, D810 (2017).CrossRefGoogle Scholar
  8. 8.
    S. K. Cho, M. J. Kim, H.-C. Koo, O. J. Kwon and J. J. Kim, Thin Solid Films, 520, 2136 (2012).CrossRefGoogle Scholar
  9. 9.
    H. C. Kim, M. J. Kim, S. Choe, T. Lim, K. J. Park, K. H. Kim, S. H. Ahn, S.-K. Kim and J. J. Kim, J. Electrochem. Soc., 161, D749 (2014).CrossRefGoogle Scholar
  10. 10.
    H. C. Kim, M. J. Kim, T. Lim, K. J. Park, K. H. Kim, S. Choe, S.-K. Kim and J. J. Kim, Thin Solid Films, 550, 421 (2014).CrossRefGoogle Scholar
  11. 11.
    P.-F. Chan, R.-H. Ren, S.-I. Wen, H.-C. Chang and W-P. Dow, J. Electrochem. Soc., 164, D660 (2017).CrossRefGoogle Scholar
  12. 12.
    M. Hakamada, Y. Nakamoto, H. Matsumoto, H. Iwasaki, Y. Chen, H. Kusuda and M. Mabuchi, Mater. Sci. Eng. A, 457, 120 (2007).CrossRefGoogle Scholar
  13. 13.
    D. Xu, W. L. Kwan, K. Chen, X. Zhang, V. Ozoliņš and K. N. Tu, Appl. Phys. Lett., 91, 254105 (2007).CrossRefGoogle Scholar
  14. 14.
    L. Lu, Y. Shen, X. Chen, L. Qian and K. Lu, Science, 304, 422 (2004).CrossRefGoogle Scholar
  15. 15.
    L. Lu, X. Chen, X. Huang and K. Lu, Science, 323, 607 (2009).CrossRefGoogle Scholar
  16. 16.
    K. Lu, L. Lu and S. Suresh, Science, 324, 349 (2009).CrossRefGoogle Scholar
  17. 17.
    M. J. Kim, S. K. Cho, H.-C. Koo, T. Lim, K. J. Park and J. J. Kim, J. Electrochem. Soc., 157, D564 (2010).CrossRefGoogle Scholar
  18. 18.
    M. J. Kim, T. Lim, K. J. Park, S. K. Cho, S.-K. Kim and J. J. Kim, J. Electrochem. Soc., 159, D538 (2012).CrossRefGoogle Scholar
  19. 19.
    M. J. Kim, T. Lim, K. J. Park, O. J. Kwon, S.-K. Kim and J. J. Kim, J. Electrochem. Soc., 159, D544 (2012).CrossRefGoogle Scholar
  20. 20.
    X. Chen and L. Lu, Scrip. Mater., 57, 133 (2007).CrossRefGoogle Scholar
  21. 21.
    G.-T. Lui, D. Chen and J.-C. Kuo, J. Phys. D: Appl. Phys., 42, 215410 (2009).CrossRefGoogle Scholar
  22. 22.
    V. A. Vas’Ko, I. Tabakovic, S. C. Riemer and M. T. Kief, Microelectron. Eng., 75, 71 (2004).CrossRefGoogle Scholar
  23. 23.
    D. S. Stoychev, I. V. Tomov and I. B. Vitanova, J. Appl. Electrochem., 15, 879 (1985).CrossRefGoogle Scholar
  24. 24.
    S. Mizumoto, H. Nawafune, T. Hiroo and M. Haga, J. Surf. Finish. Soc. Jpn., 44, 687 (1993).CrossRefGoogle Scholar
  25. 25.
    H. Nawafune, Y. Fukuda, S. Mizumoto and M. Haga, J. Surf. Finish. Soc. Jpn., 46, 834 (1995).CrossRefGoogle Scholar
  26. 26.
    J. M. E. Harper, C. Cabral Jr., P. C. Andricacos, L. Gignac, I. C. Noyan, K. P. Rodbell and C. K. Hu, J. Appl. Phys, 86, 2516 (1999).CrossRefGoogle Scholar
  27. 27.
    V. A. Vas’Ko, I. Tabakovic and S. C. Riemer, Electrochem. Solid-State Lett., 6, C100 (2003).CrossRefGoogle Scholar
  28. 28.
    C.-H. Lee and C.-O. Park, Jpn. J. Appl. Phys., 42, 4484 (2003).CrossRefGoogle Scholar
  29. 29.
    M. Stangl, J. Acker, V. Dittel, W. Gruner, V. Hoffmann and K. Wetzig, Microelectron. Eng., 82, 189 (2005).CrossRefGoogle Scholar
  30. 30.
    E. Shinada, T. Nagoshi, T.-F. M. Chang and M. Sone, Mater. Sci. Semicond. Process, 16, 633 (2013).CrossRefGoogle Scholar
  31. 31.
    C.-E. Ho, C.-C. Chen, M.-K. Lu, Y-W. Lee and Y.-S. Wu, Surf. Coat. Technol., 303, 86 (2016).CrossRefGoogle Scholar
  32. 32.
    C.-C. Chen, C.-H. Yang, Y.-S. Wu and C.-E. Ho, Surf. Coat. Technol., 320, 489 (2017).CrossRefGoogle Scholar
  33. 33.
    M. Matsuda, T. Takahashi, S. Yoshihara and M. Dobashi, Trans. Jap. Electron. Packaging, 2, 55 (2009).CrossRefGoogle Scholar
  34. 34.
    M.-Y. Cheng, K.-W. Chen, T.-F. Liu, Y.-L. Wang and H.-P. Feng, Thin Solid Films, 518, 7468 (2010).CrossRefGoogle Scholar
  35. 35.
    M. Stangl and M. Militzer, J. Appl. Phys., 103, 113521 (2008).CrossRefGoogle Scholar
  36. 36.
    M. Hasegawa, Y. Nonaka, Y. Negishi, Y. Okinaka and T. Osaka, J. Electrochem. Soc., 153, C117 (2006).CrossRefGoogle Scholar
  37. 37.
    T. Osaka, N. Yamachika, M. Yoshino, M. Hasegawa, Y. Negishi and Y. Okinaka, Electrochem. Solid-State Lett., 12, D15 (2009).CrossRefGoogle Scholar
  38. 38.
    S. Nakahara, S. Ahmed and D. N. Buckley, Electrochem. Solid-State Lett., 10, D17 (2007).CrossRefGoogle Scholar
  39. 39.
    T. Surholt and Chr. Herzig, Acta Mater., 45, 3817 (1997).CrossRefGoogle Scholar
  40. 40.
    N. Hansen and B. Ralph, Acta Metall., 30, 411 (1982).CrossRefGoogle Scholar
  41. 41.
    J. E. Flinn, D. P. Field, G. E. Korth, T. M. Lillo and J. Macheret, Acta Mater., 49, 2065 (2001).CrossRefGoogle Scholar
  42. 42.
    J. W. Hutchinson, Proc. Roy. Soc. Lond. A., 319, 247 (1970).CrossRefGoogle Scholar
  43. 43.
    M. T. Kiser, F. W. Zok and D. S. Wilkinson, Acta Mater., 44, 3465 (1996).CrossRefGoogle Scholar
  44. 44.
    C.-W. Nan and D. R. Clarke, Acta Mater., 44, 3801 (1996).CrossRefGoogle Scholar
  45. 45.
    C.-W. Nan, R. Birringer and H. Gleiter, Scrip. Mater., 37, 969 (1997).CrossRefGoogle Scholar
  46. 46.
    L. Peng, F. Liu, J. Ni and X. Lai, Mater. Des., 28, 1731 (2007).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Anna Lee
    • 1
  • Myung Jun Kim
    • 2
  • Seunghoe Choe
    • 3
  • Jae Jeong Kim
    • 1
    Email author
  1. 1.School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulKorea
  2. 2.Department of ChemistryDuke UniversityDurhamUSA
  3. 3.Electrochemistry Department, Surface Technology DivisionKorea Institute of Materials Science (KIMS)Changwon, GyeongnamKorea

Personalised recommendations