Korean Journal of Chemical Engineering

, Volume 36, Issue 6, pp 996–1003 | Cite as

Development of a low environmental impact, porous solar absorber coating utilizing binary/ternary solvent blends for CSP systems

  • John Miller
  • Kathy Nwe
  • Yongjoon Youn
  • Kyungjun Hwang
  • Chulmin Choi
  • Paul Waliaula MolaII
  • Youngjin KimEmail author
  • Sungho JinEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)


Concentrated solar power utilizes a field of mirrors to redirect solar rays onto a central receiver to generate thermal energy through heat transfer media and a Rankine steam cycle. To effectively transfer heat to the heat transfer material, the receiver has to efficiently convert/absorb the incoming solar flux without losing energy to radiation. Receivers are coated with a solar absorber coating evaluated with a figure of merit which weighs the energy absorbed by the sample against the total incident energy. The structure of the painted coating plays a large part in the long-term stability and optical properties of the solar absorber coatings. We investigated the effects of different solvents on the micro-structure of black oxide coated paint tiles and evaluated the stability of the paint colloid using the Gibbs free energy of mixing. We also investigated the use of low environmental impact solvents as potential alternates to standard solvents to create low-stress films. The results show that paint blends thinned by blends of dimethyl carbonate and tertbutylbenzene have low-stress surface morphology with pore-like structures due to the favorable Gibbs free energy value of the colloid and reduced evaporation rate of the primary solvents. These coatings also exhibited strong optical performance with figure of merit and solar absorbance values of 91.60% and 96.86%, making them ideal coatings for next generation concentrated solar power plants.


Concentrated Solar Power Black Paint Binary/Ternary Solvent Porous Paint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Nelson, The Physics of Solar Cells. Imperial College Press, London, UK (2003).CrossRefGoogle Scholar
  2. 2.
    M. Gratzel, Nature, 414, 338 (2001).CrossRefGoogle Scholar
  3. 3.
    H. L. Zhang, J. Baeyens, J. Degreve and G. Caceres, Renew. Sust. Energy Rev., 22, 466 (2013).CrossRefGoogle Scholar
  4. 4.
    D. Barlev, R. Vidu and P. Stroeve, Sol. Energy Mater. Sol. Cells, 95, 2703 (2011).CrossRefGoogle Scholar
  5. 5.
    A. Green, C. Diep, R. Dunn and J. Dent, Energy Procedia, 69, 2049 (2015).CrossRefGoogle Scholar
  6. 6.
    A. Boubalt, C. Ho, A. Hall, N. Lambert and A. Ambrosini, Renew. Energy, 85, 472 (2016).CrossRefGoogle Scholar
  7. 7.
    C. K. Ho, A. Mahoney, A. Ambrosini, M. Bencomo, A. Hall and T. N. Lambert, ASME. J. Sol. Energy Eng., 136, 14502–014502–4 (2013).CrossRefGoogle Scholar
  8. 8.
    T. Kim, B. VanSaders, J. Moon, T. Kim, C. Liu, J. Khamwannah, D. Chun, D. Choiu, A. Kargar, R. Chen, Z. Liu and S. Jin, Nano Energy, 11, 247 (2015).CrossRefGoogle Scholar
  9. 9.
    Q. Geng, X. Zhao, X. Gao, H. Yu, S. Yang and L. Gang, Sol. Energy Mater. Sol. Cells, 105, 293 (2012).CrossRefGoogle Scholar
  10. 10.
    R. Bayón, Renew. Energy, 33, 348 (2008).CrossRefGoogle Scholar
  11. 11.
    J. Vince, Sol. Energy Mater. Sol. Cells, 79, 313 (2003).CrossRefGoogle Scholar
  12. 12.
    C. E. Kennedy, Review of Mid- to High-Temperature Solar Selective Absorber Materials. TP-520-31267, NREL: Lakewood, CO (2002).CrossRefGoogle Scholar
  13. 13.
    R. C. Pohanka, R. W. Rice and B. E. Walker, J. Am. Ceram. Soc., 59, 71 (1976).CrossRefGoogle Scholar
  14. 14.
    Z. Wang, J. Wang, H. Richter, J. Howard, J. Carlson and Y. Levendis, Energy Fuels, 17, 999 (2003).CrossRefGoogle Scholar
  15. 15.
    I. Francesco, B. Cacciuttolo, M. Pucheault and S. Antoniotti, Green Chem, 17, 837 (2015).CrossRefGoogle Scholar
  16. 16.
    Silikophen P80/X: Technical Datasheet. Evonik, Essen, Germany, October (2016).Google Scholar
  17. 17.
    J. Moon, T. K. Kim, B. VanSaders, C. Choi, Z. Liu, S. Jin and R. Chen, Sol. Energy Mater. Sol. Cells, 134, 417 (2015).CrossRefGoogle Scholar
  18. 18.
    J. S. Higgins, J. E. G. Lipson and R. P. White, Phil. Trans. R. Soc. A, 368, 1009 (2010).CrossRefGoogle Scholar
  19. 19.
    A. Marciniak, Int. J. Mol. Sci, 11, 1973 (2010).CrossRefGoogle Scholar
  20. 20.
    A. J. Marzocca, A. L. Rodríguez Garraza and M. A. Mansilla, Polym. Test., 29, 119 (2010).CrossRefGoogle Scholar
  21. 21.
    M. Belmares, M. Blanco, A. Goddard, R. B. Ross, G. Caldwell, S. H. Chou, J. Pham, P. M. Olofson and C. Thomas, J. Comput. Chem., 25, 1814 (2004).CrossRefGoogle Scholar
  22. 22.
    N. Young, Thermodynamics and Phase Behavior of Miscible Polymer Blends in the Presence of Supercritical Carbon Dioxide. Ph.D. Dissertation, University of California Berkeley, Berkeley, CA, USA (2014).Google Scholar
  23. 23.
    L. Robeson, Polymer Blends: a Comprehensive Review, Hanser, Cinncinati, USA (2007).CrossRefGoogle Scholar
  24. 24.
    R. Litton, Challenges and solutions Solvent technology for present and future air quality regulations. Eastman Chemical Company, Kingsport, TN, USA (2013).Google Scholar
  25. 25.
    J. Shi, Steric Stabilization. Center for Industrial Sensors and Measurements, Ohio State University: Columbus, Ohio, USA (2002).Google Scholar
  26. 26.
    R. Anderson, “Stress Free Coatings Made Possible by Solvents Eastman Chemical Company, Kingsport, TN, USA (2004).Google Scholar
  27. 27.
    Polymer Database (2017) Names and Identifiers of Polymer. (accessed 3/7/2018).
  28. 28.
    G. Floudas, M. Paluch, A. Grzybowski and K. L. Ngai, Molecular Dynamics of Glass Forming Systems. Springer, New York, USA (2011).CrossRefGoogle Scholar
  29. 29.
    Technical Background Silicon Resins. Evonik, Essen, Germany (2014).Google Scholar
  30. 30.
    United States Environmental Protection Agency (Chemistry Dashboard), (accessed Mar 14, 2018).
  31. 31.
    J. Chickos and W. Acree, J. Phys. Chem., 32, 1880 (2013).Google Scholar
  32. 32.
    D. Mackay and I. Wessenback, Environ. Sci. Techno., 48, 10259–63 (2014).CrossRefGoogle Scholar
  33. 33.
    Pubchem, (accessed Mar 14, 2018).
  34. 34.
    R. Ashiri, A. Nemati and S. Ghamsari, Ceram. Int., 40, 8613 (2014).CrossRefGoogle Scholar
  35. 35.
    M. Debral, J. F. Francis and L. E. Scriven, AIChE J., 48, 25 (2002).CrossRefGoogle Scholar
  36. 36.
    K. Katsogiannis, G. Vladisavljevic and S. Georgiadou, Eur. Polym. J., 69, 284 (2015).CrossRefGoogle Scholar
  37. 37.
    California Air Resources Board, (accessed Mar 14, 2018).
  38. 38.
    Pyromark High Temperature Paint 2500 Flat Black (MSDS No. LACO1508007), LA-CO Industries, Elk Grove Village, IL, USA (2012).Google Scholar
  39. 39.
    R. Joesph, Metal Finishing, 108, 78 (2010).CrossRefGoogle Scholar
  40. 40.
    California Air Resources Board, (accessed Mar 14, 2018).
  41. 41.
    California Air Resources Board, (accessed Mar 14, 2018).
  42. 42.
    W. Carter, J. Pierce, D. Luo and I. Malkina, Atmos. Environ., 29, 2499 (1995).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • John Miller
    • 1
  • Kathy Nwe
    • 1
  • Yongjoon Youn
    • 1
  • Kyungjun Hwang
    • 1
  • Chulmin Choi
    • 1
  • Paul Waliaula MolaII
    • 1
  • Youngjin Kim
    • 1
    Email author
  • Sungho Jin
    • 1
    • 2
    Email author
  1. 1.NanoSD, IncSan DiegoUSA
  2. 2.Department of Mechanical & Aerospace EngineeringUniversity of California San DiegoLa JollaUSA

Personalised recommendations