Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 6, pp 851–859 | Cite as

Composition modulation of Cu/Cu2O/CuO nanoparticles supported on carbon for p-nitrophenol reduction

  • Jia Li
  • Wei Liu
  • Yongxin Ding
  • Likui Liu
  • Fang Li
  • Qiming LiEmail author
Catalysis, Reaction Engineering
  • 60 Downloads

Abstract

Porous carbon supported Cu/Cu2O/CuO ternary catalysts were fabricated by pyrolysis, in which composition modulation of Cu/Cu2O/CuO was successfully realized by adjusting annealing atmosphere. The correlation between annealing atmosphere and composition of Cu/Cu2O/CuO ternary nanoparticles was deeply investigated. XRD and SEM measurement shows that the composition proportion of Cu/Cu2O/CuO can be effectively controlled by adjusting the annealing atmosphere. HR-TEM and EDS analysis showed that Cu/Cu2O/CuO ternary nanoparticles are highly dispersed into the carbon matrix and harvest more hetero-junction active sites. The effect of Cu/Cu2O/CuO composition on their catalytic activity was investigated in catalytic reduction from p-nitrophenol to p-aminophenol. The experimental result indicated that the catalytic activity of Cu/Cu2O/CuO ternary catalysts exhibits higher catalytic activity than Cu2O/CuO or CuO particles. This work provides a new strategy for synthesizing and modulating porous carbon-supported Cu/Cu2O/CuO ternary nanoparticles.

Keywords

Ternary Catalysts Annealing Composition Modulation Phase Structure Catalytic Activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2019_275_MOESM1_ESM.pdf (337 kb)
Composition modulation of Cu/Cu2O/CuO nanoparticles supported on carbon for p-nitrophenol reduction

References

  1. 1.
    J. Hu, N. Jiang, J. Li, K. Shang, N. Lu and Y. Wu, J. Chem. Eng. J., 293, 216 (2016).CrossRefGoogle Scholar
  2. 2.
    K. Piwowar, A. Blacha-Grzechnik, P. Bernas and J. Zak, Appl. Surf. Sri., 359, 426 (2015).CrossRefGoogle Scholar
  3. 3.
    D. Juretic, H. Kusic, D. D. Dionysiou, B. Rasule and A. Loncaric Bozic, J. Chem. Eng., 257, 229 (2014).CrossRefGoogle Scholar
  4. 4.
    J. H. Noh and R. Meijboom, Appl. Surf. Sci., 320, 400 (2014).CrossRefGoogle Scholar
  5. 5.
    V. K. Gupta, N. Atar, M. L. Yola, Z. Üstündağ and L. Uzun, Water Res., 48, 210 (2014).CrossRefGoogle Scholar
  6. 6.
    U. Kurtan and A. Baykal, Mater. Res. Bull., 60, 79 (2014).CrossRefGoogle Scholar
  7. 7.
    Z. Hasan, D. W. Cho, C. M. Chon, K. Yoon and H. Song, J. Chem. Eng., 298, 183 (2016).CrossRefGoogle Scholar
  8. 8.
    B. Nabil, M.N. Morshed, E.A. Ahmida, B. Nemeshwaree, C. Christine, V Julien, T. Olivier and A. Abdelkrim, Chem. Eng. J., 356, 702 (2019).CrossRefGoogle Scholar
  9. 9.
    M. A. Bhosale, S. S. R. Gupta and B. M. Bhanage, Polyhedron, 120, 96 (2016).CrossRefGoogle Scholar
  10. 10.
    B. Nabil, E.A. Ahmid, C. Christine, V. Julien and A. Abdelkrim, Chem. Eng. J., 351, 328 (2018).CrossRefGoogle Scholar
  11. 11.
    R. J. Kongarapu, P. Mahamallik and A. Pal, J. Environ. Chem. Eng., 5, 1321 (2017).CrossRefGoogle Scholar
  12. 12.
    J. G. You, C. Shanmugam, Y. W. Liu, C. J. Yu and W. L. Tseng, J. Hazard. Mater., 324, 420 (2017).CrossRefGoogle Scholar
  13. 13.
    R. Krishna, D. M. Fernandes, J. Ventura, C. Freire and E. Titus, Int. J. Hydrogen Energ., 41, 11608 (2016).CrossRefGoogle Scholar
  14. 14.
    T. Aditya, A. Pal and T. Pal, Chem. Commun., 51, 9410 (2015).CrossRefGoogle Scholar
  15. 15.
    M. Moeinian and K. Akhbari, J. Solid State Chem, 225, 459 (2015).CrossRefGoogle Scholar
  16. 16.
    N. Bouazizi, J. Vieillard, P. Thebault, F. Desriac, T. Clamens, R. Bargougui, N. Couvrat, O. Thoumire, N. Brun, G. Ladam, S. Morin, N. Mofaddel, O. Lesouhaitier, A. Azzouz and F. Le Derf, Dalton T., 47, 9143 (2018).CrossRefGoogle Scholar
  17. 17.
    M. Tang, S. Zhang, X. Li, X. Pang and H. Qiu, Mater. Chem. Phys., 148, 639 (2014).CrossRefGoogle Scholar
  18. 18.
    L. Yuan, Q. Yin, Y. Wang and G. Zhou, Chem. Phys. Lett., 590, 92 (2013).CrossRefGoogle Scholar
  19. 19.
    A. Ajmal, I. Majeed, R. N. Malik, M. Iqbal, M. A. Nadeem, I. Hussain, S. Yousaf, Zeshan, G. Mustafa, M. I. Zafar and M. A. Nadeem, J. Enviorn. Chem. Eng., 4, 2138 (2016).CrossRefGoogle Scholar
  20. 20.
    M. E. El-Naggar, A. G. Hassabo, A. L. Mohamed and T. I. Shaheen, J. Colloid Interf. Sci., 498, 413 (2017).CrossRefGoogle Scholar
  21. 21.
    G. M. Avarenga, I. B. Coutinho Gallo and H. M. Villullas, J. Catal., 348, 1 (2017).CrossRefGoogle Scholar
  22. 22.
    L. Rout, A. Kumar, R. S. Dhaka, G. N. Reddy, S. Giri and P. Dash, Appl. Catal. A-Gen, 538, 107 (2017).CrossRefGoogle Scholar
  23. 23.
    R. Hosseinpour, A. Pineda, A. Garcia, A. A. Romero and R. Luque, Catal. Commun, 48, 73 (2014).CrossRefGoogle Scholar
  24. 24.
    Y. Wang, G. Li, J. Jin and S. Yang, Int. J. Hydrogen Energy, 42, 5938 (2017).CrossRefGoogle Scholar
  25. 25.
    X. Wei, H. Li, C. E. Yuan, Q. Li and S. Chen, Micropor. Mesopor. Mater, 118, 307 (2009).CrossRefGoogle Scholar
  26. 26.
    Y. Liu, J. Liu and Y. S. Lin, Micropor. Mesopor. Mater., 214, 242 (2015).CrossRefGoogle Scholar
  27. 27.
    J.-B. Raoof, S.R. Hosseini, R. Ojani and S. Mandegarzad, Energy, 90, Part 1 1075 (2015).CrossRefGoogle Scholar
  28. 28.
    C. Chmelik, Micropor. Mesopor. Mater., 216, 138 (2015).CrossRefGoogle Scholar
  29. 29.
    Y. Liu, J. Xu and S. Liu, Micropor. Mesopor. Mater., 236, 94 (2016).CrossRefGoogle Scholar
  30. 30.
    W. Bak, H. S. Kim, H. Chun and W. C. Yoo, Chem. Commun., 51, 7238 (2015).CrossRefGoogle Scholar
  31. 31.
    R. Zhang, L. Hu, S. Bao, R. Li, L. Gao, R. Li and Q. Chen, J. Mater. Chem. A, 4, 8412 (2016).CrossRefGoogle Scholar
  32. 32.
    J. B. DeCoste, J. M. S. Denny, G. W. Peterson, J. J. Mahle and S. M. Cohen, Chem. Sci., 7, 2711 (2016).CrossRefGoogle Scholar
  33. 33.
    S. El-Hankari, J. Huo, A. Ahmed, H. Zhang and D. Bradshaw, J. Mater. Chem. A, 2, 13479 (2014).CrossRefGoogle Scholar
  34. 34.
    S. Liu, L. Sun, F. Xu, J. Zhang, C. Jiao, F. Li, Z. Li, S. Wang, Z. Wang, X. Jiang, H. Zhou, L. Yang and C. Schick, Energy Environ. Sci., 6, 818 (2013).CrossRefGoogle Scholar
  35. 35.
    D. Bradshaw, A. Garai and J. Huo, Chem. Soc. Rev., 41, 2344 (2012).CrossRefGoogle Scholar
  36. 36.
    Y. Wang, Y. Lu, W. Zhan, Z. Xie, Q. Kuang and L. Zheng, J. Mater. Chem. A, 3, 12796 (2015).CrossRefGoogle Scholar
  37. 37.
    A. K. Sasmal, S. Dutta and T. Pal, Dalton. T., 45, 3139 (2016).CrossRefGoogle Scholar
  38. 38.
    X. Shi, F. Zheng, N. Yan and Q. Chen, Dalton. T., 43, 13865 (2014).CrossRefGoogle Scholar
  39. 39.
    M. Liu, L. Lv, X. Du, J. Lang, Y. Su, Y. Zhao and X. Wang, Rsc. Adv., 5, 103013 (2015).CrossRefGoogle Scholar
  40. 40.
    K. Layek, M. L. Kantam, M. Shirai, D. Nishio-Hamane, T. Sasaki and H. Maheswaran, Green Chem, 14, 3164 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Jia Li
    • 1
  • Wei Liu
    • 1
  • Yongxin Ding
    • 1
  • Likui Liu
    • 1
  • Fang Li
    • 1
  • Qiming Li
    • 1
    Email author
  1. 1.College of Chemistry, Chemical Engineering and Environmental EngineeringLiaoning Shihua UniversityFushun LiaoningP. R. China

Personalised recommendations