Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 6, pp 954–964 | Cite as

Multiple transesterifications in a reactive dividing wall column integrated with a heat pump

  • Heecheon Lee
  • Wonjoon Jang
  • Jae W. LeeEmail author
Separation Technology, Thermodynamics
  • 70 Downloads

Abstract

This study addresses a reactive dividing wall column (RDWC) integrated with a vapor recompression heat pump (VRHP). The reaction applied to the system contains two consecutive transesterifications of dimethyl carbonate (DMC) and ethanol, which yields methanol (MeOH) as a by-product, ethyl methyl carbonate as an intermediate product and diethyl carbonate (DEC) as the final desired product. DEC is the only stable node of the five component reacting mixture. The location of the reaction region and feed stages affects the purity of the top product because the unstable node product is not pure MeOH but DMC-MeOH azeotrope. The VRHP pressurizes the top gas product stream and the compressed gas provides heat to the bottom stream of the ethanol recovery section. The optimization procedure minimizes the power consumption of the compressor with respect to the gas flow rate. The energy consumption in the RDWC integrated with a VRHP is reduced by 32.1% and the total utility cost is also cut by 21.6% compared with the conventional RDWC.

Keywords

Reactive Dividing Wall Column Vapor Recompression Heat Pump Diethyl Carbonate Multiple Reactions Energy Savings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2019_271_MOESM1_ESM.pdf (157 kb)
Multiple transesterifications in a reactive dividing wall column integrated with a heat pump

References

  1. 1.
    M.A. Gadalla, Z. Olujic, P. J. Jansens, M. Jobson and R. Smith, Environ Sci. Technol., 39, 6860 (2005).CrossRefGoogle Scholar
  2. 2.
    J. Park, R. H. Kang and J. W Lee, Korean J. Chem. Eng., 34, 1763 (2017).CrossRefGoogle Scholar
  3. 3.
    R. H. Kang, J. Park, D. Kang and J. W Lee, Korean J. Chem. Eng., 35, 734 (2018).CrossRefGoogle Scholar
  4. 4.
    J. Zhang and J. W Lee, Carbon, 53, 216 (2013).CrossRefGoogle Scholar
  5. 5.
    J. Zhang, Z. Yu, D. Atkins and J. W Lee, J. Phys. Chem. C, 115, 8386 (2011).CrossRefGoogle Scholar
  6. 6.
    Y. K. Kim, G. M. Kim and J. W Lee, J. Mater. Chem. A, 3, 10919 (2015).CrossRefGoogle Scholar
  7. 7.
    X. Gao, X. Yin, S. Yang and D. Yang, Korean J. Chem. Eng., 36, 77 (2019).CrossRefGoogle Scholar
  8. 8.
    Y. H. Kim, Korean J. Chem. Eng., 33, 2513 (2016).CrossRefGoogle Scholar
  9. 9.
    N. V. D. Long and M. Y Lee, Korean J. Chem. Eng., 30, 286 (2013).CrossRefGoogle Scholar
  10. 10.
    J. J. Siirola, AIChE Symposium Series, New York, NY: American Institute of Chemical Engineers, 91, 222 (1995).Google Scholar
  11. 11.
    M. F. Malone and M. F. Doherty, Ind. Eng. Chem. Res., 39, 3953 (2000).CrossRefGoogle Scholar
  12. 12.
    Z. Guo, M. Ghufran and J. W. Lee, AIChE J., 49, 3161 (2003).CrossRefGoogle Scholar
  13. 13.
    Z. Guo and J. W Lee, AIChE J., 50, 1484 (2004).CrossRefGoogle Scholar
  14. 14.
    J. Chin, J. W Lee and J. Choe, AIChE J., 52, 1790 (2006).CrossRefGoogle Scholar
  15. 15.
    D. Kang and J. W Lee, Korean Chem. Eng. Res., 52, 713 (2014).CrossRefGoogle Scholar
  16. 16.
    D. Kang and J. W Lee, Comput. Aided Chem. Eng., 34, 351 (2014).CrossRefGoogle Scholar
  17. 17.
    S. H. Lee, W Y Choi, K. J. Kim, D. J. Chang and J. W Lee, Chem. Eng. Process, 123, 249 (2018).CrossRefGoogle Scholar
  18. 18.
    D. An, W. Cai, M. Xia, X. Zhang and F. Wang, Chem. Eng. Process., 92, 45 (2015).CrossRefGoogle Scholar
  19. 19.
    D. Kang and J. W Lee, Ind. Eng. Chem. Res., 54, 3175 (2015).CrossRefGoogle Scholar
  20. 20.
    I. Mueller and E. Y. Kenig, Ind. Eng. Chem. Res., 46, 3709 (2007).CrossRefGoogle Scholar
  21. 21.
    L. Zheng, W. Cai, X. Zhang and Y. Wang, Chem. Eng. Process., 111, 127 (2017).CrossRefGoogle Scholar
  22. 22.
    J. Chin and J. W Lee, Ind. Eng. Chem. Res., 47, 3930 (2008).CrossRefGoogle Scholar
  23. 23.
    X. Gao, Z. Ma, L. Yang and J. Ma, Ind. Eng. Chem. Res., 52, 11695 (2013).CrossRefGoogle Scholar
  24. 24.
    Z. Zhu, X. Liu, Y. Cao, S. Liang and Y. Wang, Korean J. Chem. Eng., 34, 866 (2017).CrossRefGoogle Scholar
  25. 25.
    S. Feng, X. Lyu, Q. Ye, H. Xia, R. Li and X. Suo, Ind. Eng. Chem. Res., 55, 11305 (2016).CrossRefGoogle Scholar
  26. 26.
    S. Feng, Q. Ye, H. Xia, R. Li and X. Suo, Chem. Eng. Res. Des., 125, 204 (2017).CrossRefGoogle Scholar
  27. 27.
    J. A. Ferre, F. Castells and J. Flores, Ind. Eng. Chem. Process Des. Dev., 24, 128 (1985).CrossRefGoogle Scholar
  28. 28.
    A. Rodriguez, J. Canosa, A. Domínguez and J. Tojo, Fluid Phase Equilib., 201, 187 (2002).CrossRefGoogle Scholar
  29. 29.
    A. Rodríguez, J. Canosa, A. Dominguez and J. Tojo, J. Chem. Eng. Data, 48, 86 (2003).CrossRefGoogle Scholar
  30. 30.
    X. Zhang, J. Zuo and C. Jian, J. Chem. Eng. Data, 55, 4896 (2010).CrossRefGoogle Scholar
  31. 31.
    H.-P. Luo, W.-D. Xiao and K.-H. Zhu, Fluid Phase Equilib, 175, 91 (2000).CrossRefGoogle Scholar
  32. 32.
    NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/.
  33. 33.
    H.-P. Luo and W.-D. Xiao, Chem. Eng. Sci., 56, 403 (2001).CrossRefGoogle Scholar
  34. 34.
    T. Keller, J. Holtbruegge, A. Niesbach and A. Görak, Ind. Eng. Chem. Res., 50, 11073 (2011).CrossRefGoogle Scholar
  35. 35.
    J. W. Lee, Y. Ko, Y. Jung, K. Lee and E. Yoon, Comput. Chem. Eng., 21, S1105 (1997).CrossRefGoogle Scholar
  36. 36.
    M. F. Doherty, Chem. Eng. Sci., 40, 1885 (1985).CrossRefGoogle Scholar
  37. 37.
    H.-Y. Wei, A. Rokhmah, R. Handogo and I. L. Chien, J. Process Control., 21, 1193 (2011).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea

Personalised recommendations