Korean Journal of Chemical Engineering

, Volume 36, Issue 6, pp 988–995 | Cite as

One-pot synthesis of highly stable and concentrated silver nanoparticles with enhanced catalytic activity

  • Fiaz Hussain
  • Samy M. Shaban
  • Jinhwan KimEmail author
  • Dong-Hwan KimEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)


Well-dispersed silver nanoparticles (AgNPs) were synthesized using a benign, one-pot process based on a low-cost wet chemistry technique. Monoethanolamine was used as a strong reducing agent and poly(acrylic acid) (PAA) was used as a stabilizing agent. After the addition of these reagents to a reaction system, one-pot synthesis of AgNPs was completed in ∼45 min at 75 °C with a reaction efficiency of 92.4%. The average particle size of the aqueous dispersion of AgNPs was 14.83±5.96 nm, and the dispersion remained stable even after 14 months in an ambient dark environment, which may be due to the electrostatic repulsion of the carboxylate anions of the stabilizing agent. The role of PAA in the stabilization of the AgNPs was analyzed via Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy. The highly stable AgNPs in the aqueous system showed high catalytic activity for the reduction of methylene blue and p-nitrophenol in the presence of sodium borohydride as the reducing agent based on pseudo-first-order kinetics.


One-pot Synthesis Silver Nanoparticles High Yield Stability Catalytic Activity Methylene Blue p-Nitrophenol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2019_270_MOESM1_ESM.pdf (75 kb)
One-pot synthesis of highly stable and concentrated silver nanoparticles with enhanced catalytic activity


  1. 1.
    K. M. Mayer and J. H. Hafner, Chem. Rev., 111, 3828 (2011).CrossRefGoogle Scholar
  2. 2.
    R. Jin, Nanoscale, 7, 1549 (2015).CrossRefGoogle Scholar
  3. 3.
    Y. Li, Y. Wu and B. S. Ong, J. Am. Chem. Soc., 127, 3266 (2005).CrossRefGoogle Scholar
  4. 4.
    W. Shen, X. Zhang, Q. Huang, Q. Xu and W. Song, Nanoscale, 6, 1622 (2014).CrossRefGoogle Scholar
  5. 5.
    M. Potara, A. M. Gabudean and S. Astilean, J. Mater. Chem., 21, 3625 (2011).CrossRefGoogle Scholar
  6. 6.
    M. Baccarin, B. C. Janegitz, R. Berte, F. C. Vicentini, C. E. Banks, O. Fatibello and V. Zucolotto, Mat. Sci. Eng. C-Mater, 58, 97 (2016).CrossRefGoogle Scholar
  7. 7.
    X. Chen and H. J. Schluesener, Toxicol. Lett., 176, 1 (2008).CrossRefGoogle Scholar
  8. 8.
    W. C. Zhang, Y. Sun and L. Zhang, Ind. Eng. Chem. Res., 54, 6480 (2015).CrossRefGoogle Scholar
  9. 9.
    M. Rai, A. Yadav and A. Gade, Biotechnol. Adv., 27, 76 (2009).CrossRefGoogle Scholar
  10. 10.
    S. Agnihotri, S. Mukherji and S. J. R. A. Mukherji, Rsc Adv., 4, 3974 (2014).CrossRefGoogle Scholar
  11. 11.
    H. S. Toh, K. Jurkschat and R. G. Compton, Chemistry, 21, 2998 (2015).CrossRefGoogle Scholar
  12. 12.
    S. Mandal, A. Gole, N. Lala, R. Gonnade, V. Ganvir and M. Sastry, Langmuir, 17, 6262 (2001).CrossRefGoogle Scholar
  13. 13.
    Y. Lu, G. L. Liu and L. P. Lee, Nano Lett., 5, 5 (2005).CrossRefGoogle Scholar
  14. 14.
    Y. Wang, J. F. Wong, X. Teng, X. Z. Lin and H. Yang, Nano Letters, 3, 1555 (2003).CrossRefGoogle Scholar
  15. 15.
    W. Y. William, C. Emmanuel, M. S. Christie, D. Rebekah and L. C. Vicki, Nanotechnology, 17, 4483 (2006).CrossRefGoogle Scholar
  16. 16.
    W. W. a. B. Gu, Concentrated Dispersions Theory, Experiment, and Applications, American Chemical Society, Wasgington DC (2004).Google Scholar
  17. 17.
    H. S. Devi, N. R. Singh and T. D. Singh, Arab. J. Sci. Eng., 41, 2249 (2016).CrossRefGoogle Scholar
  18. 18.
    Y. S. Liu, S. M. Chen, L. Zhong and G. Z. Wu, Radiat. Phys. Chem., 78, 251 (2009).CrossRefGoogle Scholar
  19. 19.
    S. Iravani, H. Korbekandi, S. V. Mirmohammadi and B. Zolfaghari, Res. Pharm. Sci., 9, 385 (2014).Google Scholar
  20. 20.
    Q. J. Huang, W. F. Shen, Q. S. Xu, R. Q. Tan and W. J. Song, Mater. Chem. Phys., 147, 550 (2014).CrossRefGoogle Scholar
  21. 21.
    S. Magdassi, M. Grouchko, O. Berezin and A. Kamyshny, Acs Nano, 4, 1943 (2010).CrossRefGoogle Scholar
  22. 22.
    Y. S. Shon and E. Cutler, Langmuir, 20, 6626 (2004).CrossRefGoogle Scholar
  23. 23.
    I. Sondi, D. V. Goia and E. Matijevic, J. Colloid Interface Sci., 260, 75 (2003).CrossRefGoogle Scholar
  24. 24.
    H. Aldewachi, T. Chalati, M. N. Woodroofe, N. Bricklebank, B. Sharrack and P. Gardiner, Nanoscale, 10, 18 (2018).CrossRefGoogle Scholar
  25. 25.
    K. Toisawa, Y. Hayashi and H. Takizawa, Mater. Trans., 51, 1764 (2010).CrossRefGoogle Scholar
  26. 26.
    A. Mari, P. Imperatori, G. Marchegiani, L. Pilloni, A. Mezzi, S. Kaciulis, C. Cannas, C. Meneghini, S. Mobilio and L. Suber, Langmuir, 26, 15561 (2010).CrossRefGoogle Scholar
  27. 27.
    J. P. Yang, H. J. Yin, J. J. Jia and Y. Wei, Langmuir, 27, 5047 (2011).CrossRefGoogle Scholar
  28. 28.
    R. M. Molnar, M. Bodnar, J. F. Hartmann and B. Janos, Colloid Polym. Sci., 287, 739 (2009).CrossRefGoogle Scholar
  29. 29.
    J. Ge, Y. Hu, M. Biasini, C. Dong, J. Guo, W. P. Beyermann and Y. Yin, Chemistry, 13, 7153 (2007).CrossRefGoogle Scholar
  30. 30.
    Y. X. Hu, J. P. Ge, D. Lim, T. R. Zhang and Y. D. Yin, J. Solid State Chem., 181, 1524 (2008).CrossRefGoogle Scholar
  31. 31.
    J. Ge, Y. Hu, M. Biasini, W. P. Beyermann and Y. Yin, Angew Chem. Int. Ed. Engl., 46, 4342 (2007).CrossRefGoogle Scholar
  32. 32.
    C. Kastner and A. F. Thunemann, Langmuir, 32, 7383 (2016).CrossRefGoogle Scholar
  33. 33.
    T. K. Sau, A. Pal and T. Pal, J. Phys. Chem. B, 105, 9266 (2001).CrossRefGoogle Scholar
  34. 34.
    Z. M. Zheng, Q. L. Huang, H. Guan and S. Y. Liu, Rsc Adv., 5, 69790 (2015).CrossRefGoogle Scholar
  35. 35.
    J. Billingham, C. Breen and J. Yarwood, Vib. Spectrosc., 14, 19 (1997).CrossRefGoogle Scholar
  36. 36.
    J. Dong, Y. Ozaki and K. Nakashima, Macromolecules, 30, 1111 (1997).CrossRefGoogle Scholar
  37. 37.
    X. Zhao, Q. D. An, Z. Y. Xiao, S. R. Zhai and Z. Shi, Chinese J. Catal., 39, 1842 (2018).CrossRefGoogle Scholar
  38. 38.
    H. Mao, C. G. Ji, M. H. Liu, Z. Q. Cao, D. Y. Sun, Z. Q. Xing, X. Chen, Y. Zhang and X. M. Song, Appl. Surf. Sci., 434, 522 (2018).CrossRefGoogle Scholar
  39. 39.
    R. Begum, Z. H. Farooqi, Z. Butt, Q. Wu, W. Wu and A. Irfan, J. Environ. Sci. (China), 72, 43 (2018).CrossRefGoogle Scholar
  40. 40.
    Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng and H. Zeng, ACS Appl. Mater. Inter., 6, 8845 (2014).CrossRefGoogle Scholar
  41. 41.
    T. Yao, T. Cui, H. Wang, L. Xu, F. Cui and J. Wu, Nanoscale, 6, 7666 (2014).CrossRefGoogle Scholar
  42. 42.
    P. K. Sahoo, N. Kumar, S. Thiyagarajan, D. Thakur and H. S. Panda, Acs Sustain. Chem. Eng., 6, 7475 (2018).CrossRefGoogle Scholar
  43. 43.
    M. T. Islam, N. Dominguez, M. A. Ahsan, H. Dominguez-Cisneros, P. Zuniga, P. J. J. Alvarez and J. C. Noveron, J. Environ. Chem. Eng., 5, 4185 (2017).CrossRefGoogle Scholar
  44. 44.
    J. Luo, N. Zhang, J. Lai, R. Liu and X. Liu, J. Hazard Mater., 300, 615 (2015).CrossRefGoogle Scholar
  45. 45.
    G. M. Shi, S. T. Li, F. N. Shi, X. F. Shi, S. H. Lv and X. B. Cheng, J. Colloids Surf, A, 555, 170 (2018).CrossRefGoogle Scholar
  46. 46.
    M. Bano, D. Ahirwar, M. Thomas, G. A. Naikoo, M. U. D. Sheikh and F. Khan, New J. Chem., 40, 6787 (2016).CrossRefGoogle Scholar
  47. 47.
    C. Gao, Q. D. An, Z. Y. Xiao, S. R. Zhai, B. Zhai and Z. Shi, New J. Chem., 41, 13327 (2017).CrossRefGoogle Scholar
  48. 48.
    Z. S. Lv, X. Y. Zhu, H. B. Meng, J. J. Feng and A. J. Wang, J. Colloid Interface Sci., 538, 349 (2018).CrossRefGoogle Scholar
  49. 49.
    Y. Y. Ju, X. Li, J. Feng, Y. H. Ma, J. Hu and X. G. Chen, Appl. Surf. Sci., 316, 132 (2014).CrossRefGoogle Scholar
  50. 50.
    J. Hu, Y.-l. Dong, X.-j. Chen, H.-j. Zhang, J.-m. Zheng, Q. Wang and X.-g. Chen, Chem. Eng. J., 236, 1 (2014).CrossRefGoogle Scholar
  51. 51.
    Y. Zhang, H. Fang, Y. Zhang, M. Wen, D. Wu and Q. Wu, J. Colloid Interface Sci., 535, 499 (2019).CrossRefGoogle Scholar
  52. 52.
    H. Veisi, S. Kazemi, P. Mohammadi, P. Safarimehr and S. Hemmati, Polyhedron, 157, 232 (2019).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.Biomedical Institute for Convergence at SKKU (BICS)Sungkyunkwan UniversitySuwonKorea
  3. 3.Polymer DepartmentSungkyunkwan UniversitySuwonKorea

Personalised recommendations