Korean Journal of Chemical Engineering

, Volume 36, Issue 6, pp 942–953 | Cite as

Adsorption of p-chlorophenol and p-nitrophenol in single and binary systems from solution using magnetic activated carbon

  • Yachan Rong
  • Runping HanEmail author


Magnetic activated carbon (MAC) was prepared by co-precipitation. These particles had attractive adsorption capacity and could be easily separated from aqueous. MAC was used as adsorbent to remove p-chlorophenol (p-CP) and p-nitrophenol (p-NP) from solution in single and binary systems. In a single system, the equilibrium time was 60 min, the best initial pH was 3-8 and 3-6 for p-CP or p-NP adsorption, respectively. The existence of salt ions had little influence on the adsorption process, while surfactant had negative influence. The adsorption quantity from experiments was up to 97.3 mg·g−1 for p-CP and 116 mg·g−1 for p-NP at 293 K, respectively. Freundlich model and pseudo-second-order kinetic model fitted well the adsorption behavior. Thermodynamic parameters were calculated and the results showed that the process was spontaneous, exothermic and entropy production in nature. In addition, p-CP or p-NP-loaded MAC could be well reused by 0.01 mol·L−1 sodium hydroxide solution as regeneration agent. Kinetic process of desorption was fitted best by pseudo-second-order kinetic model. Results from the binary system showed that competitive adsorption existed during the process, and p-NP adsorption on MAC was easier than p-CP. Freundlich model well fitted the adsorption behavior in the binary system. Hydrogen-bonding, electron donor-acceptor and π-π interactions may be the main mechanisms of adsorption. MAC proved to be an excellent adsorbent for the removal of p-CP and p-NP from solution.


Magnetic Activated Carbon p-Chlorophenol p-Nitrophenol Competitive Adsorption Desorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Anbia and S. Khoshbooei, J. Nanostruct. Chem, 5, 139 (2015).CrossRefGoogle Scholar
  2. 2.
    B. Koubaissy, J. Toufaily, M. El-murr, T. Hamieh, P. Magnoux and G. Joly, Phys. Procedia, 21, 220 (2011).CrossRefGoogle Scholar
  3. 3.
    L. R. Rad, I. Haririan and F. Divsar, Spectrochim. Acta A, 136, 423 (2015).CrossRefGoogle Scholar
  4. 4.
    C. A. Acosta, C. Pasquali, G. Paniagua, R. M. Garcinuño and P. F. Hernando, Environ. Pollut., 236, 265 (2018).CrossRefGoogle Scholar
  5. 5.
    C. Borras, T. Laredo and B. R. Scharifker, Electrochim. Acta, 48, 2775 (2003).CrossRefGoogle Scholar
  6. 6.
    H. Ozaki and H. Li, Water Res., 36, 123 (2002).CrossRefGoogle Scholar
  7. 7.
    Y Li and K. C. Loh, J. Appl. Polym. Sci., 105, 1732 (2010).CrossRefGoogle Scholar
  8. 8.
    S. H. Lin and C. S. Wang, J. Hazard. Mater., 90, 205 (2002).CrossRefGoogle Scholar
  9. 9.
    C. Sheng, X. M. Zheng, K. Fei, G. H. Wu, L. L. Luo, G. Yong H. L. Liu, W Ying, H. X. Yu and Z. G. Zou, Mater. Chem. Phys., 129, 1184 (2011).CrossRefGoogle Scholar
  10. 10.
    J. Wu and H. Q. Yu, J. Hazard. Mater., 137, 498 (2006).CrossRefGoogle Scholar
  11. 11.
    J. Su, H. F. Lin, Q. P. Wang, Z. M. Xie and Z. L. Chen, Desalination, 269, 163 (2011).CrossRefGoogle Scholar
  12. 12.
    M. Salman, M. Athar and U. Farooq, Rev. Environ. Sci. Bio., 14, 211 (2015).CrossRefGoogle Scholar
  13. 13.
    J. L. Wang and C. Chen, Biotechnol. Adv., 17, 195 (2009).CrossRefGoogle Scholar
  14. 14.
    A. Bhatnagar, W. Hogland, M. Marques and M. Sillanpää, Chem. Eng. J., 219, 499 (2013).CrossRefGoogle Scholar
  15. 15.
    P. Cañizares, M. Carmona, O. Baraza, A. Delgado and M. A. Rodrigo, J. Hazard. Mater., 131, 243 (2006).CrossRefGoogle Scholar
  16. 16.
    N. Yang, S. M. Zhu, D. Zhang and S. Xu, Mater. Lett., 62, 645 (2008).CrossRefGoogle Scholar
  17. 17.
    S. Singh, Res. J. Chem. Sci., 6, 361 (2015).Google Scholar
  18. 18.
    S. Han, F. Zhao, J. Sun, B. Wang, R. Y. Wei and S. Q. Yan, J. Magn. Magn. Mater., 341, 133 (2013).CrossRefGoogle Scholar
  19. 19.
    Y. C. Rong, H. Li, L. H. Xiao, Q. Wang, Y. Y. Hu, S. S. Zhang and R. P. Han, Desalin. Water. Treat, 106, 273 (2018).CrossRefGoogle Scholar
  20. 20.
    B. Kakavandi, M. Jahangiri-rad, M. Rafiee, A. R. Esfahani and A. A. Babaei, Micropor. Mesopor. Mater., 231, 192 (2016).CrossRefGoogle Scholar
  21. 21.
    V. L. Lassalle, R. D. Zysler and M. L. Ferreira, Mater. Chem. Phys., 130, 624 (2011).CrossRefGoogle Scholar
  22. 22.
    L. C. A. Oliveira, R. Rios, J. D. Fabris, V. Garg, K. Sapag and R. M. Lago, Carbon, 40, 2177 (2002).CrossRefGoogle Scholar
  23. 23.
    A. Tóth, A. Töröcsik, E. Tombácz and K. László, J. Colloid Interface Sci., 387, 244 (2012).CrossRefGoogle Scholar
  24. 24.
    Q. M. Wei and T. Nakato, Micropor. Mesopor. Mater., 96, 84 (2006).CrossRefGoogle Scholar
  25. 25.
    E. F. Mohamed, C. Andriantsiferana, A. M. Wilhelm and H. Delmas, Environ. Technol., 32, 1325 (2011).CrossRefGoogle Scholar
  26. 26.
    Y. B. Jiao, D. L. Han, Y. Z. Lu, Y. C. Rong, L. Y. Fang, Y. L. Liu and R. P. Han, Desalin. Water. Treat., 77, 247 (2017).CrossRefGoogle Scholar
  27. 27.
    T. Zhou, L. Y. Fang, X. W. Wang, M. Y. Han, S. S. Zhang and R. P. Han, Desalin. Water Treat., 70, 294 (2017).CrossRefGoogle Scholar
  28. 28.
    I. K. Battisha, H. H. Afify and M. Ibrahim, J. Magn. Magn. Mater., 306, 211 (2006).CrossRefGoogle Scholar
  29. 29.
    J. Y. Song, W. H. Zou, Y. Y. Bian, F. Y. Su and R. P. Han, Desalination, 265, 119 (2011).CrossRefGoogle Scholar
  30. 30.
    R. D. Zhang, J. H. Zhang, X. N. Zhang, C. C. Dou and R. P. Han, J. Taiwan Inst. Chem. E., 45, 2578 (2014).CrossRefGoogle Scholar
  31. 31.
    N. Li, J. Chen and Y. P. Shi, Anal. Chim. Acta, 949, 23 (2017).CrossRefGoogle Scholar
  32. 32.
    G. Mihoc, R. Ianoç and C. Păcurariu, Water Sci. Technol., 69, 385 (2014).CrossRefGoogle Scholar
  33. 33.
    B. Zhang, F. Li, T. Wu, D. J. Sun and Y. J. Li, Colloids Surf, A., 464, 78 (2015).CrossRefGoogle Scholar
  34. 34.
    S. K. Srivastava and R. Tyagi, Water Res., 29, 483 (1995).CrossRefGoogle Scholar
  35. 35.
    F. Zhang, Z. Wei, W. N. Zhang and H. Y. Cui, Spectrochim. Acta A, 182, 116 (2017).CrossRefGoogle Scholar
  36. 36.
    Y. S. Ho and G. Mckay, Process Biochem., 34, 451 (1999).CrossRefGoogle Scholar
  37. 37.
    C.W. Cheung, J.F. Porterand G. Mckay, Sep. Purif. Technol., 19, 55 (2000).CrossRefGoogle Scholar
  38. 38.
    B. H. Hameed and A. A. Rahman, J. Hazard. Mater., 160, 576 (2008).CrossRefGoogle Scholar
  39. 39.
    A. E. Ofomaja and E. I. Unuabonah, Carbohydr. Polym., 83, 1192 (2011).CrossRefGoogle Scholar
  40. 40.
    A. E. Vasu, E-J. Chem, 5, 224 (2012).CrossRefGoogle Scholar
  41. 41.
    I. A. Bello, M. A. Oladipo, A. A. Giwa and D. O. Adeoye, Int. J. Basic Appl. Sci., 2, 79 (2013).Google Scholar
  42. 42.
    J. M. Li, X. G. Meng, C. W. Hu and J. Du, Bioresour. Technol., 100, 1168 (2009).CrossRefGoogle Scholar
  43. 43.
    H. A. Arafat, M. Franz and N. G. Pinto, Langmuir, 15, 5997 (1999).CrossRefGoogle Scholar
  44. 44.
    K. Yang, Q. Jing, W. Wu, L. Zhu and B. Xing, Environ. Sci. Technol., 44, 681 (2010).CrossRefGoogle Scholar
  45. 45.
    M. Ahmaruzzaman and D. K. Sharma, J. Colloid Interface Sci., 287, 14 (2005).CrossRefGoogle Scholar
  46. 46.
    K. A. Halhouli, N. A. Darwish and Y. R. Y. Al-Jahmany, Sep. Sci. Technol., 32, 3027 (1997).CrossRefGoogle Scholar
  47. 47.
    G. Crini, Dyes Pigm., 77, 415 (2008).CrossRefGoogle Scholar
  48. 48.
    R. P. Han, Y. F. Wang, P. Han, J. Shi, J. Yang and Y. S. Lu, J. Hazard. Mater., 137, 550 (2006).CrossRefGoogle Scholar
  49. 49.
    M. Chabani, A. Amraneb and A. Bensmaili, Chem. Eng. J, 125, 111 (2006).CrossRefGoogle Scholar
  50. 50.
    T. S. Anirudhan and M. Ramachandran, J. Water Process Eng., 1, 46 (2014).CrossRefGoogle Scholar
  51. 51.
    C. Y. Chang, W. T. T. Sai, C. H. Ing and C. H. Chang, J. Colloid Interface Sci., 260, 273 (2003).CrossRefGoogle Scholar
  52. 52.
    Y. Fan, R. F. Yang, Z. M. Lei, N. Liu, J. L. Lv, S. R. Zhai, B. Zhai and L. Wang, Korean J. Chem. Eng., 33, 1416 (2016).CrossRefGoogle Scholar
  53. 53.
    T. Zhou, W. Z. Lu, L. F. Liu, H. M. Zhu, Y. B. Jiao, S. S. Zhang and R. P. Han, J. Mol. Liq., 211, 909 (2015).CrossRefGoogle Scholar
  54. 54.
    M. L. Nguyen and R. S. Juang, Biotechnol. Bioproc. E., 20, 614 (2015).CrossRefGoogle Scholar
  55. 55.
    J. M. Chern and Y. W. Chien, Water Res., 37, 2347 (2003).CrossRefGoogle Scholar
  56. 56.
    S. R. Ha and S. Vinitnantharat, Environ. Technol., 21, 387 (2000).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouP. R. China

Personalised recommendations