Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 4, pp 620–624 | Cite as

Electrochemical characteristics of lithium-excess cathode material (Li1+xNi0.9Co0.05Ti0.05O2) for lithium-ion batteries

  • Hyoung Shin Ko
  • Hyun Woo Park
  • Geun Joong Kim
  • Jong Dae LeeEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)
  • 18 Downloads

Abstract

A Ni0.9Co0.05Ti0.05(OH)2 precursor was synthesized with the concentration gradient method. To overcome the Li-ion shortage the problem due to the formation of a solid electrolyte interphase (SEI) layer during the initial charge/discharge process in the cathode material, lithium-excess Li1+xNi0.9Co0.05Ti0.05O2 (0≤x≤T0.07) cathode materials were investigated by physical and electrochemical analyses. The physical properties of the lithium-excess cathode materials were analyzed using FE-SEM and XRD. A coin type half-cell was fabricated with the electrolyte of 1M LiPF6 dissolved in organic solvents (EC:EMC=1: 2 vol%). The electrochemical performances were analyzed by the initial charge/discharge efficiency, cycle stability, rate performance and electrochemical impedance spectroscopy (EIS). The initial charge capacity of the cathode material was excellent at about 199.8–201.7mAh/g when the Li/Metal ratio was 1.03–1.07. Additionally, the efficiency of the 6.0 C/0.1 C was 79.2–79.9%. When the Li/Metal ratio was 1.05, the capacity retention showed the highest stability of 97.8% after 50 cycles.

Keywords

Lithium-excess Li/Metal Ratio Li-ion Shortage SEI Layer Cathode Material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Fergus, J. Power Sources, 195, 939 (2010).CrossRefGoogle Scholar
  2. 2.
    A. Kraytsberg and Y. Ein-Eli, Adv. Energy Mater., 2, 922 (2012).CrossRefGoogle Scholar
  3. 3.
    Q. Cao, H. P. Zhang, G. J. Wang, Q. Xia, Y. P. Wu and H. Q. Wu, Electrochem. Commun., 9, 1228 (2007).CrossRefGoogle Scholar
  4. 4.
    W. Ebner, D. Fouchard and L. Xie, Solid State Ionics, 69, 238 (1994).CrossRefGoogle Scholar
  5. 5.
    E. Rossen, C. D. W. Jones and J. R. Dahn, Solid State Ionics, 57, 311 (1992).CrossRefGoogle Scholar
  6. 6.
    Q. Zhong and U. Sacken, J. Power Sources, 54, 221 (1995).CrossRefGoogle Scholar
  7. 7.
    J. Kim and K. Amine, Electrochem. Commun., 3, 52 (2001).CrossRefGoogle Scholar
  8. 8.
    H. Liu, J. Li, Z. Zhang, Z. Gong and Y. Yang, Electrochim. Acta, 49, 1151 (2004).CrossRefGoogle Scholar
  9. 9.
    V. Subramanian and G. T. K. Fey, Solid State Ionics, 148, 351 (2002).CrossRefGoogle Scholar
  10. 10.
    P. Oh, S. Myeong, W. Cho, M. J. Lee, M. Ko, H. Y. Jeong and J. Cho, Nano Lett., 14, 5965 (2014).CrossRefGoogle Scholar
  11. 11.
    F. Nomura, Y. Liu, T. Tanabe, N. Tamura, T. Tsuda, T. Hagiwara, T. Gunji, T. Ohsaka and F. Matsumoto, Electrochim. Acta, 269, 321 (2018).CrossRefGoogle Scholar
  12. 12.
    H. Z. Zhang, Q. Q. Qiao, G. R. Li, S. H. Ye and X. P. Gao, J. Mater. Chem., 22, 13104 (2012).CrossRefGoogle Scholar
  13. 13.
    H. S. Ko, J. H. Kim, J. Wang and J. D. Lee, J. Power Sources, 372, 107 (2017).CrossRefGoogle Scholar
  14. 14.
    H. Xie, G. Hu, K. Du, Z. Peng and Y. Cao, J. Alloys Compd., 666, 84 (2016).CrossRefGoogle Scholar
  15. 15.
    W. Li, J. N. Reimers and J. R. Dahn, Phys. Rev. B, 46, 3236 (1992).CrossRefGoogle Scholar
  16. 16.
    T. Ohzuku, A. Ueda and M. Nagayama, J. Electrochem. Soc., 140, 1862 (1993).CrossRefGoogle Scholar
  17. 17.
    J. R. Dahn, U. V. Sacken and C. A. Michal, Solid State Ionics, 44, 87 (1990).CrossRefGoogle Scholar
  18. 18.
    Y. M. Choi, S. I. Pyun and S. I. Moon, Solid State Ionics, 89, 43 (1996).CrossRefGoogle Scholar
  19. 19.
    K. Wu, F. Wang, L. Gao, M. R. Li, L. Xiao, L. Zhao, S. Hu, X. Wang, Z. Xu and Q. Wu, Electrochim. Acta, 75, 393 (2012).CrossRefGoogle Scholar
  20. 20.
    X. Wei, S. Zhang, P. Yang, H. Li, S. Wang, Y. Ren, Y. Xing and J. Meng, Int. J. Electrochem. Sci., 12, 5636 (2017).CrossRefGoogle Scholar
  21. 21.
    Y. S. Lee, W. K. Shin, A. G. Kannan, S. M. Koo and D. W. Kim, ACS Appl. Mater. Interfaces, 7, 13944 (2015).CrossRefGoogle Scholar
  22. 22.
    H. S. Ko, H. W. Park and J. D. Lee, Korean Chem. Eng. Res., 56(5), 718 (2018).Google Scholar
  23. 23.
    C. S. Yoon, M. H. Choi, B. B. Lim, E. J. Lee and Y. K. Sun, J. Electrochem. Soc., 162(14), A2483 (2015).CrossRefGoogle Scholar
  24. 24.
    M. D. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurbach, U. Heider and L. Heider, J. Electrochem. Soc., 146(4), 1279 (1999).CrossRefGoogle Scholar
  25. 25.
    T. Zhao, S. Chen, L. Li, X. Zhang, R. Chen, I. Belharouak, F. Wu and K. Amine, J. Power Sources, 228, 206 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Hyoung Shin Ko
    • 1
  • Hyun Woo Park
    • 2
  • Geun Joong Kim
    • 2
  • Jong Dae Lee
    • 2
    Email author
  1. 1.New Material R&D CenterHuayou New Energy Technology Co., Ltd.Zhejiang ProvinceChina
  2. 2.Department of Chemical EngineeringChungbuk National UniversitySeowongu, Cheongju, ChungbukKorea

Personalised recommendations