Korean Journal of Chemical Engineering

, Volume 36, Issue 4, pp 613–619 | Cite as

Photoluminescence and photocatalytic properties of Eu3+-doped CaZnTiO3 perovskites with metal ion loading

  • Byung-Geon ParkEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)


Europium (Eu3+)-doped CaZnTiO3 perovskite phosphors were synthesized using a sol-gel reaction method. Different solvent materials were introduced to the synthesis process to produce higher emitting phosphors. Eu3+-doped CaZnTiO3 perovskite synthesized using an ethanol mixture solvent exhibited higher photoluminescence intensities for red emission than those synthesized using distilled water as a solvent. The synthesized Eu3+-doped CaZnTiO3 perovskites were characterized by photo-physical analysis and tested for the photocatalytic degradation of toluene. Ru, Co, and Ni ions were loaded on the perovskites to improve photocatalytic activity. Ni ion-loaded CaZnTiO3: Eu3+ perovskite showed enhanced red emission and higher photocatalytic activities compared to those of bare CaZnTiO3: Eu3+ perovskite. The improvement of the photocatalytic degradation of toluene was attributed to the lower bandgap of Ni ion-loaded CaZnTiO3: Eu3+ perovskite, as determined by UV-visible diffuse reflectance spectroscopy.


CaZnTiO3 Perovskite Europium Photoluminescence Photocatalytic Degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Kanhere and Z. Chen, Molecules, 19, 19995 (2014).CrossRefGoogle Scholar
  2. 2.
    B. A. Josephine, A. Manikandan, V. M. Teresita and S. A. Antony, Korean J. Chem. Eng., 33, 1590 (2016).CrossRefGoogle Scholar
  3. 3.
    K. Zhao, F. He, Z. Huang, G. Wei, A. Zheng, H. Li and Z. Zhao, Korean J. Chem. Eng., 34, 1651 (2017).CrossRefGoogle Scholar
  4. 4.
    W. Chen, R. Sammynaiken and Y. Huang, J. Appl. Phys., 88, 1424 (2000).CrossRefGoogle Scholar
  5. 5.
    S. Lazaro, J. Milanez, A. T. de Figueiredo, V. M. Longo, V. R. Mastelaro, F. S. DeVicente, A. C. Hernandes, J. A. Varela and E. Longo, Appl. Phys. Lett., 90, 111904 (2007).CrossRefGoogle Scholar
  6. 6.
    Y. Pan, Q. Su, X. Xu, T. Chem, W. Ge, C. Yang and M. Wu, J. Solid State Chem., 174, 69 (2003).CrossRefGoogle Scholar
  7. 7.
    D. Haranath, A. F. Khan and H. Chander, J. Phys. D: Appl. Phys., 39, 4956 (2006).CrossRefGoogle Scholar
  8. 8.
    V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela and E. Longo, Solid State Sci., 10, 1056 (2008).CrossRefGoogle Scholar
  9. 9.
    S. Okamoto and H. Kobayashi, J. Appl. Phys., 86, 5594 (1999).CrossRefGoogle Scholar
  10. 10.
    X. Zhang, J. Zhang, M. Wang, X. Zhang, H. Zhao and X. J. Wang, J. Lumin., 128, 818 (2008).CrossRefGoogle Scholar
  11. 11.
    X. M. Liu, P. Y. Jia and J. Liu, J. Appl. Phys., 99, 124902 (2006).CrossRefGoogle Scholar
  12. 12.
    W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer and W. M. Yen, J. Lumin., 119, 13 (2006).CrossRefGoogle Scholar
  13. 13.
    X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, X. G. Ren and X. J. Wang, Appl. Phys. Lett., 90, 151911 (2007).CrossRefGoogle Scholar
  14. 14.
    J. Fu, Q. Zhang, Y. Li and H. Wang, J. Lumin., 130, 231 (2010).CrossRefGoogle Scholar
  15. 15.
    J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho and C. G. Kim, Appl. Phys. Lett., 84, 2931 (2004).CrossRefGoogle Scholar
  16. 16.
    P. J. Deren, R. Pazik, W. Strek, Ph. Boutinaud and R. Mahiou, J. Alloys Compd., 451, 595 (2008).CrossRefGoogle Scholar
  17. 17.
    A. Bao, C. Tao and H. Yang, J. Lumin., 126, 859 (2007).CrossRefGoogle Scholar
  18. 18.
    I. Omkaram, B. V. Rao and S. Buddhudu, J. Alloys Compd., 474, 565 (2009).CrossRefGoogle Scholar
  19. 19.
    X. Gao, L. Lei, C. Lv, Y. Sun, H. Zheng and Y. Cui, J. Solid State Chem., 181, 1776 (2008).CrossRefGoogle Scholar
  20. 20.
    H. Zhang, X. Fu, S. Niu and Q. Xin, J. Alloys Compd., 459, 103 (2008).CrossRefGoogle Scholar
  21. 21.
    Q. Jia, A. Iwase and A. Kudo, Chem. Sci., 5, 1513 (2014).CrossRefGoogle Scholar
  22. 22.
    K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, Chem. Commun., 23, 2416 (2001).CrossRefGoogle Scholar
  23. 23.
    H. Zhang, G. Chen, X. He and J. Xu, J. Alloys Compd., 516, 91 (2012).CrossRefGoogle Scholar
  24. 24.
    Q. Fu, J. L. Li, T. He and F. W. Yang, J. Appl. Phys., 113, 104303 (2013).CrossRefGoogle Scholar
  25. 25.
    Y. S. You, K.-H. Chung, J.-H. Kim and G. Seo, Korean J. Chem. Eng., 18, 924 (2001).CrossRefGoogle Scholar
  26. 26.
    B.-G. Park, Catalysts, 8, 227 (2018).CrossRefGoogle Scholar
  27. 27.
    F.-F. Chen, K. Huang, J.-P. Fan and D.-J. Tao, AIChE J., 64, 632 (2018).CrossRefGoogle Scholar
  28. 28.
    R. D. Shannon, Acta Cryst., A32, 751 (1976).CrossRefGoogle Scholar
  29. 29.
    T. M. Mazzo, M. L. Moreira, I. M. Pinatti, F. C. Picon, E. R. Leite, I. L. V. Rosa, J. A. Varela, L. A. Perazolli and E. Longo, Opt. Mater., 32, 990 (2010).CrossRefGoogle Scholar
  30. 30.
    Q. Xiao, L. Xiao, Y. Liu, X. Chen and Y. Li, J. Phys. Chem. Solids, 71, 1026 (2010).CrossRefGoogle Scholar
  31. 31.
    H. Du, W. Shan, L. Wang, D. Xu, H. Yin, Y. Chen and D. Guo, J. Lumin., 176, 272 (2016).CrossRefGoogle Scholar
  32. 32.
    J. Fu, Q. Zhang, Y. Li and H. Wang, J. Alloys Compd., 485, 418 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.Department of Food and NutritionKwangju Women’s UniversityGwangjuKorea

Personalised recommendations