Korean Journal of Chemical Engineering

, Volume 36, Issue 4, pp 605–612 | Cite as

Fabrication of magnetically recyclable ZrO2-TiO2/CoFe2O4 hollow core/shell photocatalysts: Improving photocatalytic efficiency under sunlight irradiation

  • Hong-xia JingEmail author
  • Jing Huang
  • Na Li
  • Long-xiang Li
  • Jingyue Zhang
Materials (Organic, Inorganic, Electronic, Thin Films)


TiO2 is an important material for photocatalytic oxidation to degrade organic pollutants, but its utilization under visible light is low, recovery is difficult, and stability is poor. We prepared ZrO2-TiO2/CoFe2O4 (Zr-Ti/Co) photocatalyst with hollow core-shell structure by sol-gel method and layer-by-layer self-assembly method with tetrabutyl titanate and Zirconium n-butoxide as main raw materials. The samples were characterized and analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), solid ultraviolet visible diffuse reflection (UV-Vis DRS), fluorescence (FL), ultraviolet visible absorption (UV), vibrating sample magnetometer (VSM). It is concluded that the TiO2 maintains a good anatase phase structure in the Zr-Ti-Co photocatalyst. Under UV light and sunlight, the degradation rate of the photocatalyst reached 96.1% and 99.7% for 60 min, respectively, for Rhodamine B (10mg/L) reaction system. And after repeated use for five times, it still showed better regeneration and reuse.


Photocatalytic Performance ZrO2-TiO2/CoFe2O4 Photocatalyst Sunlight Regeneration and Reuse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Y. Xing, W. J. Xu, C. C. Dong, Y. C. Bai, J. B. Zeng, Y. Zhou, J. L. Zhang and Y. D. Yin, Chem-US., 4, 1359 (2018).CrossRefGoogle Scholar
  2. 2.
    C. C. Dong, J. H. Ji, B. Shen, M. Y. Xing and J. L. Zhang, Environ. Sci. Technol., 52, 11297 (2018).CrossRefGoogle Scholar
  3. 3.
    H. Z. Li, L. Y. Shen, K. F. Zhang, B. J. Sun, L. P. Ren, P. Z. Qiao, K. Pan, L. Wang and W. Zhou, Appl. Catal. B-Environ., 220, 111 (2018).CrossRefGoogle Scholar
  4. 4.
    Z. F. Bian, J. Zhu and H. X. Li, J. Photochem. Photobio. C., 28, 72 (2016).CrossRefGoogle Scholar
  5. 5.
    F. Han, V. S. R. Kambala, M. Srinivasan, D. Rajarathnam and R. Naidu, Appl. Catal. A-Gen., 359, 25 (2009).Google Scholar
  6. 6.
    Z. Shayegan, C. S. Lee and F. Haghighat, Chem. Eng. J., 334, 2408 (2018).CrossRefGoogle Scholar
  7. 7.
    N. R. Khalid, A. Majid, M. B. Tahir, N. A. Niaz and S. Khalid, Ceram. Int., 43, 14552 (2017).CrossRefGoogle Scholar
  8. 8.
    K. Sayama and H. Arakawa, J. Cheminformatics, 93, 1647 (1997).Google Scholar
  9. 9.
    J. Wang, L. Peng, F. Cao, B. Q. Su and H. Shi, Synth. React. Inorg. M., 47, 396 (2016).Google Scholar
  10. 10.
    C. Haw, S. A. Rahman, W. Chiu, P. Khiew, S. Radiman, R. A. Shukor, M. A. A. Hamid and N. Ghazali, New J. Chem., 40, 1124 (2016).CrossRefGoogle Scholar
  11. 11.
    G. V. Samsonov, N. F. Podgrushko, M. I. Lesnaya, L. A. Dvorina and N. F. Selivanova, Sov. Phys. J., 18, 1276 (1975).CrossRefGoogle Scholar
  12. 12.
    K. A. Barrios, J. Mater. Sci. Lett., 17, 1095 (1998).CrossRefGoogle Scholar
  13. 13.
    D. Das, H. K. Mishra, K. M. Parida and A. K. Dalai, J. Mol. Catal. A-Chem., 189, 271 (2002).CrossRefGoogle Scholar
  14. 14.
    M. C. Tsai, P. H. Cheng, M. H. Lee, H. C. Lin and M. J. Chen, J. Phys. D Appl. Phys., 49, 265108 (2016).CrossRefGoogle Scholar
  15. 15.
    I. M. A. Mohamed, V. D. Dao, N. A. M. Barakat, A. S. Yasin, A. Yousef and H.-S. Choi, J. Colloid Interface Sci., 476, 9 (2016).CrossRefGoogle Scholar
  16. 16.
    L. J. Tomar, P. J. Bhatt, R. k. Desai and B. S. Chakrabarty, JNAM, 2, 27 (2014).Google Scholar
  17. 17.
    J. Q. Zhang, L. Li, Z. X. Xiao, D. Liu, S. Wang, J. J. Zhang, Y. T. Hao and W. Z. Zhang, Acs Sustain. Chem. Eng., 4, 2037 (2016).CrossRefGoogle Scholar
  18. 18.
    B. H. Yao, X. P. Han, Y. Lü, C. Peng and C. J. Zhang, Mater. Sci. Forum, 852, 257 (2016).CrossRefGoogle Scholar
  19. 19.
    J. Zhang, L. Li, J. Zhang, X. Zhang and W. Zhang, New J. Chem., 41, 9113 (2017).CrossRefGoogle Scholar
  20. 20.
    R. A. Lucky, R. Sui, J. M. H. Lo and P. A. Charpentier, Cryst. Growth Des., 10, 1598 (2010).CrossRefGoogle Scholar
  21. 21.
    A. A. Rodríguez-Rodríguez, S. Martínez-Montemayor, C. C. Leyva-Porras, F. E. Longoria-Rodríguez, E. Martínez-Guerra and M. Sánchez-Domínguez, J. Nanomater., 2367856 (2017).Google Scholar
  22. 22.
    C. Y. Haw, W. S. Chiu, S. Abdul Rahman, P. Khiew, S. Radiman, R. Abd-Shukor, M. A. Hamid and N. Ghazali, New J. Chem., 40, 1124 (2015).CrossRefGoogle Scholar
  23. 23.
    X. Gao, X. Liu, Z. Zhu, X. J. Wang and Z. Xie, Sci. Rep-UK, 6, 30543 (2016).CrossRefGoogle Scholar
  24. 24.
    S. Rana, J. Rawat and R. D. K. Misra, Acta Biomater., 1, 691 (2005).CrossRefGoogle Scholar
  25. 25.
    K. Laohhasurayotin, S Pookboonmee, D. Viboonratanasri and W. Kangwansupamonkon, Mater. Res. Bull., 47, 1500 (2012).CrossRefGoogle Scholar
  26. 26.
    Z. Yang, B. Wang and Y. Shi, Appl. Surf. Sci., 399, 192 (2017).CrossRefGoogle Scholar
  27. 27.
    K. Panwar, M. Jassal and A. Agrawal, Rsc Adv., 6, 92754 (2016).CrossRefGoogle Scholar
  28. 28.
    T. Čižmar, U. L. Štangar and I. Arčon, Catal. Today, 287, 155 (2017).CrossRefGoogle Scholar
  29. 29.
    M. V. Limaye, S. B. Singh, R. Das, P. Poddar, M. K. Abyaneh and S. K. Kulkarni, J. Magn. Magn. Mater., 441, 683 (2017).CrossRefGoogle Scholar
  30. 30.
    D. Wang, J. Yang, X. Li, J. Wang, H. Zhai, J. Lang and H. Song, Phys. Status. Solidi. A., 214, 1600665 (2017).CrossRefGoogle Scholar
  31. 31.
    M. O. Ojemaye, A. I. Okoh and O. O. Okoh, J. Nanomater., 1, 5264910 (2017).Google Scholar
  32. 32.
    D. Beydoun and R. Amal, Mater. Sci. Eng. B-ADV, 94, 71 (2002).CrossRefGoogle Scholar
  33. 33.
    Z. Li, Y. Yao, Y. Zheng, T. Gao, Z. Liu and G. Zhou, J. Electrochem. Soc., 165, 58 (2018).CrossRefGoogle Scholar
  34. 34.
    M. Alijani, B. K. Kaleji and S. Rezaee, J. Mater. Sci.-Mater. El., 28, 15345 (2017).CrossRefGoogle Scholar
  35. 35.
    D. Greene, R. Serrano-Garcia, J. Govan and Y. Gun’ko, Nanomaterials-Basel, 4, 331 (2014).CrossRefGoogle Scholar
  36. 36.
    H. Zhuang, Y. Zhang, Z. Chu, J. Long, X. An, H. Zhang and X. Wang, Phys. Chem. Chem. Phys., 18, 9636 (2016).CrossRefGoogle Scholar
  37. 37.
    C. C. Chen, D. Jaihindh, S. H. Hu and Y. P. Fu, J. Photoch. Photobio. A., 334, 74 (2017).CrossRefGoogle Scholar
  38. 38.
    M. A. Golsefidi and B. Sarkhosh, J. Iran. Chem. Soc., 14, 1089 (2017).CrossRefGoogle Scholar
  39. 39.
    M. Xing, J. Zhang, B. Qiu, B. Tian, M. Anpo and M. Che, Small, 11, 1920 (2015).CrossRefGoogle Scholar
  40. 40.
    M. R. D. Khaki, M. S. Shafeeyan, A. A. A. Raman and W. M. A. W. Daud, J. Mater. Sci.-Mater. El., 29, 5480 (2018).CrossRefGoogle Scholar
  41. 41.
    M. Y. Xing, Y. Zhou, C. Y. Dong, L. J. Cai, L. X. Zeng, B. Shen, L. H. Pan, C. C. Dong, Y. Chai, J. L. Zhang and Y. D. Yin, Nano Lett., 18, 3384 (2018).CrossRefGoogle Scholar
  42. 42.
    Z. Noorimotlagh, I. Kazeminezhad, N. Jaafarzadeh, M. Ahmadi, Z. Ramezani and S. Silva Martinez, J. Hazard. Mater., 350, 108 (2018).Google Scholar
  43. 43.
    J. J. Zhang, P. Qi, J. Li, X. C. Zheng, P. Liu, X. X. Guan and G. P. Zheng, J. Ind. Eng. Chem., 61, 407 (2018).CrossRefGoogle Scholar
  44. 44.
    O. S. Ayanda, S. M. Nelana, L. F. Petrik and E. B. Naidoo, J. Water Health, 15, 1015 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Hong-xia Jing
    • 1
    Email author
  • Jing Huang
    • 1
  • Na Li
    • 1
  • Long-xiang Li
    • 1
  • Jingyue Zhang
    • 1
  1. 1.Department of Chemistry, School of ScienceNorth University of ChinaTaiyuanChina

Personalised recommendations