Korean Journal of Chemical Engineering

, Volume 36, Issue 4, pp 522–528 | Cite as

Structural properties of disordered macroporous La2O2CO3/ZnO materials prepared by a solution combusion method

  • Hongyan Yu
  • Yong Men
  • Eun Woo ShinEmail author
Catalysis, Reaction Engineering


Disordered macroporous La2O2CO3/ZnO materials were prepared by a solution combustion method, and then their microstructures and La2O2CO3 phases were investigated as functions of La/Zn ratios and calcination temperatures. All of the materials prepared by the solution combustion method clearly showed disordered macroporous morphology whose framework was composed of ZnO and La2O2CO3 nanoparticles. A monoclinic La2O2CO3 structure was mainly formed in the disordered macroporous materials at La/Zn=1 and 2. In contrast, the conventional coprecipitation of La2O2CO3/ZnO materials dominantly formed a hexagonal La2O2CO3 phase with aggregating morphology of ZnO and La2O2CO3 nanoparticles. However, nanocrystalline sizes of ZnO (7–10 nm) and monoclinic La2O2CO3 (12–14 nm) in the disordered macroporous structure were much smaller than those (29–36 nm for ZnO and 44–58 nm for hexagonal La2O2CO3) by conventional co-precipitation. In addition, the high temperature calcination at 700 °C increased the ZnO nanocrystallite size (24 nm) in the disordered macroporous framework, with transforming La2O2CO3 into La2O3. This result implies that the interaction between monoclinic La2O2CO3 and ZnO in the disordered macroporous structure inhibited ZnO nanoparticle agglomeration.


La2O2CO3 Phases Disordered Macroporosity Solution Combustion Nanoparticle Sizes Structural Properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2019_239_MOESM1_ESM.pdf (470 kb)
Structural properties of disordered macroporous La2O2CO3/ZnO materials prepared by a solution combusion method


  1. 1.
    D. B. Meadowcroft, J. Phys. D: Appl. Phys., 2, 1225 (1969).CrossRefGoogle Scholar
  2. 2.
    Q. W. Song, X. M. Wang, R. Bussjager and J. Osman, Appl. Opt., 35, 3155 (1996).CrossRefGoogle Scholar
  3. 3.
    A. Tarjomannejad, A. Farzi, A. Niaei and D. Salari, Korean J. Chem. Eng., 33, 2628 (2016).CrossRefGoogle Scholar
  4. 4.
    S. H. Park, B.-H. Chun and S. H. Kim, Korean J. Chem. Eng., 28, 402 (2011).CrossRefGoogle Scholar
  5. 5.
    J. Kašpar, P. Fornasiero and N. Hickey, Catal. Today, 77, 419 (2003).CrossRefGoogle Scholar
  6. 6.
    J. Ma, M. Fang and N. T. Lau, Appl. Catal. A Gen., 150, 253 (1997).CrossRefGoogle Scholar
  7. 7.
    G. Herrera, J. Jimenez-Mier and E. Chavira, Mater. Charact., 89, 13 (2014).CrossRefGoogle Scholar
  8. 8.
    D. Ding, W. Lu, Y. Xiong, X. Pan, J. Zhang, C. Ling, Y. Du and Q. Xue, Appl. Surf. Sci., 426, 725 (2017).CrossRefGoogle Scholar
  9. 9.
    L. Jia, J. Li and W. Fang, J. Alloys Compd., 489, L13 (2017).CrossRefGoogle Scholar
  10. 10.
    F. Wang, Z. Zhang, X. Wei, Q. Fang and X. Jiang, Appl. Catal. A Gen., 543, 196 (2017).CrossRefGoogle Scholar
  11. 11.
    X. Li, D. Li, H. Tian, L. Zeng, Z. J. Zhao and J. Gong, Appl. Catal. B Environ., 202, 683 (2017).CrossRefGoogle Scholar
  12. 12.
    C. Park, H. Nguyen-Phu and E. W. Shin, Mol. Catal., 435, 99 (2017).CrossRefGoogle Scholar
  13. 13.
    H. Li, D. Gao, P. Gao, F. Wang, N. Zhao, F. Xiao, W. Wei and Y. Sun, Catal. Sci. Technol., 3, 2801 (2013).CrossRefGoogle Scholar
  14. 14.
    H. Li, X. Jiao, L. Li, N. Zhao, F. Xiao, W. Wei, Y. Sun and B. Zhang, Catal. Sci. Technol., 5, 989 (2015).CrossRefGoogle Scholar
  15. 15.
    L. Jin, Y. Zhang, J. P. Dombrowski, C. H. Chen, A. Pravatas, L. Xu, C. Perkins and S. L. Suib, Appl. Catal. B Environ., 103, 200 (2015).CrossRefGoogle Scholar
  16. 16.
    C. Estruch Bosch, M. P. Copley, T. Eralp, E. Bilbé, J. W. Thybaut, G. B. Marin and P. Collier, Appl. Catal. A Gen., 536, 104 (2017).CrossRefGoogle Scholar
  17. 17.
    H. Niu, Q. Min, Z. Tao, J. Song, C. Mao, S. Zhang and Q. Chen, J. Alloys Compd., 509, 744 (2011).CrossRefGoogle Scholar
  18. 18.
    Q. Mu and Y. Wang, J. Alloys Compd., 509, 396 (2011).CrossRefGoogle Scholar
  19. 19.
    A. Tsoukalou, Q. Imtiaz, S. M. Kim, P. M. Abdala, S. Yoon and C. R. Müller, J. Catal., 343, 208 (2016).CrossRefGoogle Scholar
  20. 20.
    D. Pakhare, V. Schwartz, V. Abdelsayed, D. Haynes, D. Shekhawat, J. Poston and J. Spivey, J. Catal., 316, 78 (2014).CrossRefGoogle Scholar
  21. 21.
    M. Sadakane, T. Asanuman, J. Kubo and W. Ueda, Chem. Mater., 17, 3546 (2005).CrossRefGoogle Scholar
  22. 22.
    G. Zhang, Z. Zhao, J. Liu, J. Xu, Y. Jing, A. Duan and G. Jiang, J. Rare Earths, 27, 955 (2009).CrossRefGoogle Scholar
  23. 23.
    S. Irusta, L. M. Cornaglia and E. A. Lombardo, Mater. Chem. Phys., 86, 440 (2004).CrossRefGoogle Scholar
  24. 24.
    R. P. Turcotte, J. O. Sawyer and L. Eyring, Inorg. Chem., 8, 238 (1969).CrossRefGoogle Scholar
  25. 25.
    T. Levan, M. Che, J. M. Tatibouet and M. Kermarec, J. Catal., 142, 18 (1993).CrossRefGoogle Scholar
  26. 26.
    J. Ni, L. Chen, J. Lin, M. K. Schreyer, Z. Wang and S. Kawi, Int. J. Hydrog. Energy, 38, 13631 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringUniversity of UlsanUlsanKorea
  2. 2.College of Chemistry and Chemical EngineeringShanghai University of Engineering ScienceShanghaiP. R. China

Personalised recommendations