Korean Journal of Chemical Engineering

, Volume 36, Issue 4, pp 573–583 | Cite as

Surface modification of polysulfone ultrafiltration membrane by in-situ ferric chloride based redox polymerization of aniline-surface characteristics and flux analyses

  • Vrinda GoelEmail author
  • Uttam Kumar MandalEmail author
Separation Technology, Thermodynamics


On the basis of the water-loving nature of Polyaniline (PANI), super hydrophilic polysulfone (PS) ultrafiltration membranes were prepared via in-situ polymerization of aniline on the surface of the membrane. Growing polyaniline in-situ leads to permeability enhancement of the ultrafiltration membrane. Surface-attenuated total reflection Fourier transform infrared spectroscopy, Atomic force microscopy, Scanning electron microscopy and energy dispersive X-spectroscopy and water contact angle demonstrated the successful attachment of PANI on PS membrane surface. Modified membranes containing increased amount of PANI were compared to the unmodified PS membrane to estimate the change in membrane performance, hydrophilicity and anti-fouling properties. PANI modified membranes showed higher water fluxes in comparison to unmodified membranes, while protein rejection was almost similar in both PANI modified and unmodified PS membranes. Atomic force microscopy and contact angle measurements confirmed increased membrane surface hydrophilicity with increasing PANI content. Fouling study and flux recovery experiments revealed that modified membranes exhibit higher flux recovery ratio (65%) and more stability to strong cleaning agents.


Surface Modification Ultrafiltration PANI Hydrophilicity Stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Zhao, Z. Wang, X. Wei, B. Zhao, J. Wang, S. Yang and S. Wang, Ind. Eng. Chem. Res., 51, 4661 (2012).CrossRefGoogle Scholar
  2. 2.
    S. Zhao, Z. Wang, X. Wei, B. Zhao, J. Wang, S. Yanga and S. Wanga, J. Membr. Sci., 385, 251 (2011).CrossRefGoogle Scholar
  3. 3.
    S. Nishigochi, T. Ishigami, T. Maruyama, Yan Hao, Y. Ohmukai, Y. Iwasaki and H. Matsuyama, Ind. Eng. Chem. Res., 53, 2491 (2014).CrossRefGoogle Scholar
  4. 4.
    D. Wu, X. Liu, S. Yu, M. Liu and C. Gao, J. Membr. Sci., 352, 76 (2010).CrossRefGoogle Scholar
  5. 5.
    N. A. M. Nazri, W. J. Lau and A. F. Ismail, Korean J. Chem. Eng., 32, 1853 (2015).CrossRefGoogle Scholar
  6. 6.
    F. Ardeshiri, A. Akbari, M. Peyravi and M. Jahanshahi, Korean J. Chem. Eng., 36, 255 (2019).CrossRefGoogle Scholar
  7. 7.
    M. Bahrami, J. Karimi-Sabet, A. Hatamnejad, A. Dastbaz and M. A. Moosavian, Korean J. Chem. Eng., 35, 2241 (2018).CrossRefGoogle Scholar
  8. 8.
    M. C. Villalobos, A. A. P. Cid, M. A. M. Alho and A. M. H. González, Korean J. Chem. Eng., 35, 2394 (2018).CrossRefGoogle Scholar
  9. 9.
    Z. Li, T. Shi, T. Zhang, Q. Guo, F. Qiu, X. Yue and D. Yang, Korean J. Chem. Eng., 36, 92 (2019).CrossRefGoogle Scholar
  10. 10.
    J. Y. Park, M. H. Acar, A. Akthakul, W. Kuhlman and A. M. Mayes, Biomaterials, 27, 856 (2006).CrossRefGoogle Scholar
  11. 11.
    J. Qiu, Y. Zhang, Y. Shen, Y. Zhang, H. Zhang and J. Liu, Appl. Surf. Sci., 256, 3274 (2010).CrossRefGoogle Scholar
  12. 12.
    K. Akamatsu, K. Mitsumori, F. Han and S. Nakao, Ind. Eng. Chem. Res., 50, 12281 (2011).CrossRefGoogle Scholar
  13. 13.
    M. N. A. Seman, N. Hilal and M. Khayet, Desalin. Water Treat., 51, 4855 (2013).CrossRefGoogle Scholar
  14. 14.
    Z. Afsarian and Y. Mansourpanah, Korean J. Chem. Eng., 35, 1867 (2018).CrossRefGoogle Scholar
  15. 15.
    G. E. Chen, L. Sun, Z. L. Xu, H. Yang, H. H. Huang and Y. J. Liu, Korean J. Chem. Eng., 32, 2492 (2015).CrossRefGoogle Scholar
  16. 16.
    H. Shi, Y. He, Y. Pan, H. Di, G. Zeng, L. Zhang and C. Zhang, J. Membr. Sci., 506, 60 (2016).CrossRefGoogle Scholar
  17. 17.
    R. Mukherjee, R. Sharma, P. Saini and Sirshendu, Environ. Sci.: Water Res. Technol., 1, 893 (2015).Google Scholar
  18. 18.
    J. Alam, L. A. Dass, M. S. Alhoshan, M. Ghasemi and A. W. Mohammad, Appl. Water Sci., 2, 37 (2012).CrossRefGoogle Scholar
  19. 19.
    M. Nemati, S. M. Hosseini, E. Bagheripour and S. S. Madaen, Korean J. Chem. Eng., 33, 1037 (2016).CrossRefGoogle Scholar
  20. 20.
    X. Huang, B. T. McVerry, C. M. Jones, M. C. Y. Wong, E. M. V. Hoek and R. B. Kaner, J. Mater. Chem. A., 3, 8725 (2015).CrossRefGoogle Scholar
  21. 21.
    G. R. Guillen, T. P. Farrell, R. B. Kaner and E. M. V. Hoek, J. Mater. Chem., 20, 4621 (2010).CrossRefGoogle Scholar
  22. 22.
    J. M. D’Arcya, H. D. Tranb, V. C. Tungc, A. K. T. Schwartza, R. P. Wonga, Y. Yangc and R. B. Kaner, PNAS, 107, 19673 (2010).CrossRefGoogle Scholar
  23. 23.
    S. Zhao, Z. Wang, J. Wang and S. Wang, Ind. Eng. Chem. Res., 53, 11468 (2014).CrossRefGoogle Scholar
  24. 24.
    Y. Mansourpanah, A. Kakanejadifard, F. G. Dehrizi, M. Tabatabaei and H. Soltani Afarani, Korean J. Chem. Eng., 32, 149 (2015).CrossRefGoogle Scholar
  25. 25.
    M. Rahimi, S. Dadari, S. Zeinaddini and E. Mohamadian, Korean J. Chem. Eng., 34, 1444 (2017).CrossRefGoogle Scholar
  26. 26.
    Z. Fan, Z. Wang, M. Duan, J. Wang and S. Wang, J. Membr. Sci., 310, 402 (2008).CrossRefGoogle Scholar
  27. 27.
    Z. Fan, Z. Wang, N. Sun, J. Wang and S. Wang, J. Membr. Sci., 320, 363 (2008).CrossRefGoogle Scholar
  28. 28.
    B. Chakrabarty, A. K. Ghoshal and M. K. Purkait, J. Membr. Sci., 315, 36 (2008).CrossRefGoogle Scholar
  29. 29.
    G. D. Nestorovic, K. B. Jeremic and S. M. Jovanovic, J. Serb. Chem. Soc., 71, 895 (2006).CrossRefGoogle Scholar
  30. 30.
    J. Huang and R. B. Kaner, Angew. Chem., 116, 5941 (2004).CrossRefGoogle Scholar
  31. 31.
    L. Zhang, M. Wan and Y. Wei, Macromol. Rapid Commun., 27, 366 (2006).CrossRefGoogle Scholar
  32. 32.
    N. Gospodinova and L. Terlemezyan, Prog. Polym. Sci., 23, 1443 (1998).CrossRefGoogle Scholar
  33. 33.
    J. Li, Soon J. Yoon, B. Y. Hsieh, W. Tai, M. O’Donnell and X. Gao, Nano Lett., 15, 8217 (2015).CrossRefGoogle Scholar
  34. 34.
    J. Yin, E. Kim, J. Yang and B. Deng, J. Membr. Sci., 423, 238 (2012).CrossRefGoogle Scholar
  35. 35.
    Y. Liao, X. G. Li, E. M. V. Hoek and R. B. Kaner, J. Mater. Chem. A, 1, 15390 (2013).CrossRefGoogle Scholar
  36. 36.
    P. Dallas, D. Stamopoulos, N. Boukos, V. Tzitzios, D. Niarchos and D. Petridis, Polymer, 48, 3162 (2007).CrossRefGoogle Scholar
  37. 37.
    S. Kumar, V. Singh, S. Aggarwal, U. K. Mandal and R. K. Kotnala, Compos. Sci. Technol., 70, 249 (2010).CrossRefGoogle Scholar
  38. 38.
    J. Xu and D. Bhattacharyya, Ind. Eng. Chem. Res., 46, 2348 (2007).CrossRefGoogle Scholar
  39. 39.
    L. P. Zhu, J. Z. Yu, Y. Y. Xu, Z. Y. Xi and B. K. Zhu, Colloids Surf., B: Biointerfaces., 69, 152 (2009).CrossRefGoogle Scholar
  40. 40.
    B. T. McVerry, J. A. T. Temple, X. Huang, K. L. Marsh, E. M. V. Hoek and R. B. Kaner, Chem. Mater., 25, 3597 (2013).CrossRefGoogle Scholar
  41. 41.
    S. B. Teli, S. Molina, A. Sotto, E. G. Calvo and J. d. Abajo, Ind. Eng. Chem. Res., 52, 9470 (2013).CrossRefGoogle Scholar
  42. 42.
    X. Zhao and C. He, Appl. Mater. Interfaces, 7, 17947 (2015).CrossRefGoogle Scholar
  43. 43.
    R. Saranya, M. Kumar, R. Tamilarasan, A. F. Ismail and G. Arthanareeswaran, J. Chem. Technol. Biotechnol., 91, 748 (2016).CrossRefGoogle Scholar
  44. 44.
    F. Li, J. Meng, J. Ye, B. Yang, Q. Tian and C. Deng, Desalination, 344, 422 (2014).CrossRefGoogle Scholar
  45. 45.
    S. S. Madaeni and S. Samieirad, Desalination, 257, 80 (2010).CrossRefGoogle Scholar
  46. 46.
    A. A. Amoudi, P. Williams, A. S. A. Hobaib and R. W. Lovitt, Appl. Surf. Sci., 254, 3983 (2008).CrossRefGoogle Scholar
  47. 47.
    X. Shi, G. Tal, N. P. Hankins and V. Gitis, J. Water Process Eng., 1, 121 (2014).CrossRefGoogle Scholar
  48. 48.
    Z. Y. Xi, Y. Y. Xu, L. P. Zhu, Y. Wang and B. K. Zhu, J. Membr. Sci., 327, 244 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.University School of Chemical Technology, Guru Gobind Singh Indraprastha UniversityDwarka, New DelhiIndia

Personalised recommendations