Korean Journal of Chemical Engineering

, Volume 36, Issue 2, pp 299–304 | Cite as

In situ electrochemical and mechanical accelerated stress tests of a gas diffusion layer for proton exchange membrane fuel cells

  • Dongguk Joo
  • Kookil Han
  • Jong Hyun JangEmail author
  • Sehkyu ParkEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)


This study proposes an in situ accelerated stress test of a gas diffusion layer (GDL) at a gas-solution-electrode triple phase boundary to individually examine electrochemical and mechanical GDL aging for the first time. Electrochemical GDL stability during repeated potential jumps and mechanical GDL robustness during inert gas permeation were investigated. A Pt-loaded GDL was used to mimic a GDL in contact with Pt particles at the cathode. It was also used to evaluate GDL degradation during an accelerated stress test. In this study, the GDL that experienced an electrochemical stress of potential jumps up to 1.75 V for 27.8 h exhibited 2.9-fold and 4-fold higher losses in electrochemical surface area and oxygen reduction current, respectively, than did one eroded by Ar permeation at 325 cm3 min-1 for 100 h.


Proton Exchange Membrane Fuel Cell Gas Diffusion Layer In situ Accelerated Stress Test Electrochemical and Mechanical Degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Lemons, J. Power Sources, 29, 251 (1990).CrossRefGoogle Scholar
  2. 2.
    A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. Dubois, M. Dupuis, J.G. Ferry, E. Fujita, R. Hille, J.A. Kenis, C.A. Kerfeld, R.H. Morris, H.F. Peden, A.R. Portis, S.W. Ragsdale, T.B. Rauchfuss, N. H. Reek, L. C. Seefeldt, R. K. Thauer and G. L. Waldrop, J. Am. Chem. Soc., 113, 6624 (2013).Google Scholar
  3. 3.
    S. Park, Y. Shao, J. Liu and Y. Wang, Energy Environ. Sci., 5, 9331 (2012).CrossRefGoogle Scholar
  4. 4.
    S. Park, Y. Shao, V.V. Viswanathan, J. Liu and Y. Wang, J. Ind. Eng. Chem., 42, 81 (2016).CrossRefGoogle Scholar
  5. 5.
    D. Prasanna and V. Selvaraj, Korean J. Chem. Eng., 33, 1489 (2016).CrossRefGoogle Scholar
  6. 6.
    I.-S. Han, S.-K. Park and C.-B. Chung, Korean J. Chem. Eng., 33, 3127 (2016).Google Scholar
  7. 7.
    B. Kazeminasab, S. Rowshanzamir and H. Ghadamian, Korean J. Chem. Eng., 34, 2978 (2017).CrossRefGoogle Scholar
  8. 8.
    X. Yuan, H. Li, S. Zhang, J. Martin and H. Wang, J. Power Sources, 196, 9107 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Wu, X. Yuan, J. J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu and W. Merida, J. Power Sources, 184, 104 (2008).CrossRefGoogle Scholar
  10. 10.
    Y. S. Horn, W. C. Sheng, S. Chen, P. J. Ferreira, E. F. Holby and D. Morgan, Top. Catal., 46, 285 (2007).CrossRefGoogle Scholar
  11. 11.
    X. Yu and S. Ye, J. Power Sources, 172, 145 (2007).CrossRefGoogle Scholar
  12. 12.
    S. Yu, X. Li, S. Liu, J. Hao, Z. Shao and B. Yi, RSC Adv., 4, 3852 (2014).CrossRefGoogle Scholar
  13. 13.
    C. A. Reiser, L. Bregoli, T.W. Patterson, J. S. Yi, J.D. Yang, M. L. Perry and T.D. Jarvi, J. Electrochem. Soc., 8, A273 (2005).Google Scholar
  14. 14.
    H. Tang, Z. Qi, M. Ramani and J. F. Elter, J. Power Sources, 158, 1306 (2006).CrossRefGoogle Scholar
  15. 15.
    F. Jia, F. Liu, L. Guo and H. Liu, Int. J. Hydrogen Energy, 41, 6469 (2016).CrossRefGoogle Scholar
  16. 16.
    Y. Yamashita, S. Itami, J. Takano, K. Kakinuma, H. Uchida, M. Watanabe, A. Iiyama and M. Uchida, J. Electrochem. Soc., 164, F181 (2017).CrossRefGoogle Scholar
  17. 17.
    G. Chen, H. Zhang, H. Ma and H. Zhong, Int. J. Hydrogen Energy, 34, 8185 (2009).CrossRefGoogle Scholar
  18. 18.
    L.M. Roen, C. H. Paik and T.D. Jarvi, J. Electrochem. Soc., 7, A19 (2004).Google Scholar
  19. 19.
    I. Nitta, T. Hottinen, O. Himanen and M. Mikkola, J. Power Sources, 171, 26 (2007).CrossRefGoogle Scholar
  20. 20.
    W.R. Chang, J. J. Hwang, F. B. Weng and S.H. Chan, J. Power Sources, 166, 149 (2007).CrossRefGoogle Scholar
  21. 21.
    J. Chun, D. Jo, S. Kim, S. Park, C. Lee and S. Kim, Renew. Energ., 48, 35 (2012).CrossRefGoogle Scholar
  22. 22.
    R. Srivastava, P. Mani, N. Hahn and P. Strasser, Angew. Chem. Int. Ed., 46, 8988 (2007).CrossRefGoogle Scholar
  23. 23.
    E. Das, S. A Gürsel, L. I. Sanh and A. B. Yurtcan, Int. J. Hydrogen Energy, 42, 19426 (2017).Google Scholar
  24. 24.
    J. Zhao, S. Shahgaldi, I. Alaefour, Q. Xu and X. Li, Appl. Energy, 209, 203 (2018).CrossRefGoogle Scholar
  25. 25.
    H. Ishikawa, Y. Sugawara, G. Inoue and M. Kawase, J. Power Sources, 374, 196 (2018).CrossRefGoogle Scholar
  26. 26.
    J. Omura, H. Yano, M. Watanabe and H. Uchida, Langmuir, 27, 6464 (2011).CrossRefGoogle Scholar
  27. 27.
    W. Vielstich, Fuel Cells: Modern Processes for the Electrochemical Production of Energy, John Wiley & Sons, New York (1970).Google Scholar
  28. 28.
    A. J. Bard and L.R. Faulkner, Electrochemical methods, John Wiley & Sons, New York (1980).Google Scholar
  29. 29.
    S. Park, Y. Shao, H. Wan, V.V. Viswanathan, S. A. Towne, P.C. Rieke, J. Liu and Y. Wang, J. Phys. Chem. C, 115, 22633 (2011).CrossRefGoogle Scholar
  30. 30.
    H. Wang, R. Côte, G. Faubert, D. Guay and J. P. Dodelet, J. Phys. Chem. B, 103, 2042 (1999).CrossRefGoogle Scholar
  31. 31.
    Z.R. Yue, W. Jiang, L. Wang, S.D. Gardner and C.U. Pittman Jr., Carbon, 37, 1785 (1999).CrossRefGoogle Scholar
  32. 32.
    J. Gulyás, E. Földes, A. Lázár and B. Pukánszky, Compos. Part AAppl. S., 32, 353 (2001).CrossRefGoogle Scholar
  33. 33.
    W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J. G. Chen and Y. Yan, Nat. Commun., 6, 5848 (2015).CrossRefGoogle Scholar
  34. 34.
    Y. Sugawara, T. Okayasu, A. P. Yadav, A. Nishikata and T. Tsuru, J. Electrochem. Soc., 159, F779 (2012).CrossRefGoogle Scholar
  35. 35.
    F. Hasché, M. Oezaslan and P. Strasser, Phys. Chem. Chem. Phys., 12, 15251 (2010).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKwangwoon UniversitySeoulKorea
  2. 2.Fuel Cell Research CenterKorea Institute of Science and Technology (KIST)SeoulKorea
  3. 3.Fuel Cell Technology Development TeamEco Technology Center, Hyundai & Kia MotorsYongin-si, Gyeonggi-doKorea

Personalised recommendations