Advertisement

The robustness of titanium hydride potassium perchlorate (THPP) for long-term stability of pyrotechnic mechanical devices (PMDs)

  • Junwoo Lee
  • Hyuntae Choi
  • Seyoung Lim
  • Gil Hwan Ahn
  • Jong Gyu Paik
  • Byung Tae Ryu
  • Yong Ha Kim
  • Yong Sun WonEmail author
Rapid Communication
  • 3 Downloads

Abstract

Long-term stability of the explosive charges in pyrotechnic mechanical devices (PMDs) is important in order to sustain the precision and accuracy of the explosion. We have been seeking robust materials against aging since self-generated aging by internal factors and induced aging by external factors, such as humidity (or extra oxygen source), might cause physical or chemical changes of the explosive charges to reduce their explosive power (or performance degradation). In this study, we precisely analyzed the aging properties of titanium hydride potassium perchlorate (THPP), one of the primary explosive charges. For the self-generated aging by internal factors, AKTS (advanced kinetics and technology solution) simulation using DSC (differential scanning calorimeter) profiles of different heating rates (1, 2, 4 and 8 °C/min) were used to calculate the initiation time of spontaneous reaction. The resulting initiation time at a storage temperature of 192 °C was ~200 years, demonstrating that THPP is hardly aged by itself. To investigate the induced aging by humidity, THPP samples aged under 100% RH (relative humidity) at 70 °C up to 16 weeks were characterized. Thermal analysis showed no loss of relative heat released (or no loss of explosive power) by the aging time, and almost constant reaction rate was maintained, indicating THPP is not affected by aging both thermodynamically and kinetically. This result was confirmed by direct TEM (transmittance electron microscope)-EDS (energy dispersion spectroscopy) observations as well, where no trace of oxide on the surface of titanium hydride (TiH2) appeared regardless of the aging time.

Keywords

Aging Explosive Charge Pyrotechnic Mechanical Devices (PMDs) Titanium Hydride Potassium Perchlorate (THPP) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. J. Bement and H. A. Multhaup, AIAA J., 37, 357 (1999).CrossRefGoogle Scholar
  2. 2.
    J. S. Lee, K. L. Lin, C. H. Lin, P. J. Ch’en, C. W. Huang and S. S. Chang, Thermochim. Acta, 173, 211 (1990).CrossRefGoogle Scholar
  3. 3.
    A. Ulas, G. A. Risha and K. K. Kuo, Propellants Explos. Pyrotech., 31, 311 (2006).CrossRefGoogle Scholar
  4. 4.
    N. Yan, B. Bao, F. Zheng and C. Li, Propellants Explos. Pyrotech., 41, 223 (2016).CrossRefGoogle Scholar
  5. 5.
    K. S. Lai, AIAA, ASME, SAE, and ASEE Joint Propulsion Conference and Exhibition (1998).Google Scholar
  6. 6.
    R. P. Olmos, A. Rios, M. P. Martin, R. A. S. Lapa and J. L. F. C. Lima, Analyst, 124, 97 (1999).CrossRefGoogle Scholar
  7. 7.
    E. E. Gilbert and G. P. Sollot, Chem. Eng. News, 58, 32 (1980).Google Scholar
  8. 8.
    L. W. Hunter, J. W. White, P. H. Cohen and P. J. Biermann, Johns Hopkins APL Tech. Dig., 21, 575 (2000).Google Scholar
  9. 9.
    C. S. Gorzynski and J. N. Maycock, J. Spacecraft Rockets, 11, 211 (1974).CrossRefGoogle Scholar
  10. 10.
    B. J. Bellott, W. Noh, R. G. Nuzzo and G. S. Girolami, Chem. Commun., 22, 3214 (2009).CrossRefGoogle Scholar
  11. 11.
    V. K. Patel, A. Ganguli, R. Kant and S. Bhattacharya, RSC Adv., 5, 14967 (2015).CrossRefGoogle Scholar
  12. 12.
    D. N. Sorensen, A. P. Quebral, E. E. Broody and W. B. Sanborn, J. Therm. Anal. Calorim., 85, 151 (2006).CrossRefGoogle Scholar
  13. 13.
    J. G. Paik, B. T. Ryu and M. Kwon, Korean Chem. Eng. Res., 52, 166 (2014).CrossRefGoogle Scholar
  14. 14.
    A. Q. Le, L. Z. Sun and T. C. Miller, J. Propul. Power, 29, 299 (2013).CrossRefGoogle Scholar
  15. 15.
    S. G. Hosseinia, S. M. Pourmortazavia and S. S. Hajimirsadeghi, Combust. Flame, 141, 322 (2005).CrossRefGoogle Scholar
  16. 16.
    S. D. Brown, E. L. Charsley, S. J. Goodall, P. G. Laye, J. J. Rooney and T. T. Griffiths, Thermochim. Acta, 401, 53 (2003).CrossRefGoogle Scholar
  17. 17.
    J. Sivan, Y. Haas, D. Grinstein, S. Kochav, G. Yegudayev and L. Kalontarov, Combust. Flame, 162, 516 (2015).CrossRefGoogle Scholar
  18. 18.
    D. Ouyang, G. Pan, H. Guan, C. Zhu and X. Chen, Thermochim. Acta, 513, 119 (2011).CrossRefGoogle Scholar
  19. 19.
    J. Lee, T. Kim, S. U. Ryu, K. Choi, G. H. Ahn, P. G. Paik, B. Ryu, T. Park and Y. S. Won, Sci. Rep., 8, 11745 (2018).CrossRefGoogle Scholar
  20. 20.
    J. Lee, K. Choi, S. U. Ryu, G. H. Ahn, J. G. Paik, B. Ryu and Y. S. Won, Nanoscience and Nanotech. Lett., 10, 735 (2018).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Junwoo Lee
    • 1
  • Hyuntae Choi
    • 1
  • Seyoung Lim
    • 1
  • Gil Hwan Ahn
    • 2
  • Jong Gyu Paik
    • 3
  • Byung Tae Ryu
    • 3
  • Yong Ha Kim
    • 4
  • Yong Sun Won
    • 4
    Email author
  1. 1.Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang, KyoungbukKorea
  2. 2.Defence R&D CenterHanwha CorporationDaejeonKorea
  3. 3.Agency for Defense DevelopmentDaejeonKorea
  4. 4.Department of Chemical EngineeringPukyong National UniversityBusanKorea

Personalised recommendations