Korean Journal of Chemical Engineering

, Volume 36, Issue 4, pp 540–550 | Cite as

Degradation and statistical optimization of 3,5,6-trichloro-2-pyridinol by zero valent iron-activated persulfate

  • Roaa Mogharbel
  • Muqiong Liu
  • Shengli Zou
  • Cherie YestrebskyEmail author
Environmental Engineering


The compound 3,5,6-trichloro-2-pyridinol (TCPy), a metabolite of the broad-spectrum organophosphorus insecticide chlorpyrifos, is both more persistent and more water soluble than its parent compound. This difference, which allows TCPy to more readily leach into surface water and groundwater, has led to widespread contamination of TCPy in soils and aquatic environments. In this study, the degradation of TCPy by sulfate radicals was evaluated using zero valent iron activated persulfate in aqueous media. Response surface methodology coupled with Box-Behnken design was applied to evaluate the effects of the independent variables (concentration of zero valent iron, concentration of persulfate, and pH) on the mineralization of TCPy by zero valent iron activated persulfate system. The interactions, coefficients, and residuals of these variables were statically evaluated by analysis of variance. Based on the model, the optimum conditions for maximum TCPy mineralization were determined as 10.4mM of persulfate, 1.2 g/L of zero valent iron and an initial pH of 3.2. The reaction kinetics of the degradation process were examined as functions of persulfate concentration, zero valent iron concentration, and pH. Results show that zero valent iron activated persulfate can effectively remove TCPy in water with a high mineralization rate of up to 81.1%. The degradation pathways of TCPy were proposed based on the products identified by GC-MS. Calculated ΔG values using density functional theory agreed with the proposed experimental pathway.


3,5,6-Trichloro-2-pyridinol Persulfate Sulfate Radical Zero Valent Iron Box-Behnken Design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Grube, D. Donaldson, T. Kiely and L. Wu, US EPA (2011).Google Scholar
  2. 2.
    S. Uniyal and R. K. Sharma, Biosens. Bioelectron., 116, 37 (2018).CrossRefGoogle Scholar
  3. 3.
    S. Khalid, I. Hashmi and S. J. Khan, J. Environ. Manage., 168, 1 (2016).CrossRefGoogle Scholar
  4. 4.
    USEPA (2002). Interim reregistration eligibility decision for chlorpyrifos, Washington D. C. USGPO.Google Scholar
  5. 5.
    S. M. Amer and F. A. Aly, Mutation Research/Genetic Toxicology, 279(3), 165 (1992).CrossRefGoogle Scholar
  6. 6.
    J. M. Van Emon, P. Pan and F. van Breukelen, Chemosphere, 191, 537 (2018).CrossRefGoogle Scholar
  7. 7.
    R. Žabar, S. Mohamed, A. T. Lebedev, O. V. Polyakova and P. Trebše, Chemosphere, 144, 615 (2016).CrossRefGoogle Scholar
  8. 8.
    A. Seidmohammadi, R. Amiri, J. Faradmal, M. Lili and G. Asgari, Korean J. Chem. Eng., 35(3), 694 (2018).CrossRefGoogle Scholar
  9. 9.
    I. A. Ike, K. Linden, J. D. Orbell and M. Duke, Chem. Eng. J., 338(15), 651 (2018).CrossRefGoogle Scholar
  10. 10.
    C. Barrera-Díaz, P. Cañizares, F. J. Fernández, R. Natividad and M. A. Rodrigo, J. Mex. Che. Soc., 58(3), 256 (2014).Google Scholar
  11. 11.
    X. Wang, J. Min, S. Li, X. Zhu, X. Cao, S. Yuan, X. Zuo and X. Deng, J. Environ. Chem. Eng., 6(3), 4078 (2018).CrossRefGoogle Scholar
  12. 12.
    P. Jeon, S.-M. Park and K. Baek, Korean J. Chem. Eng., 34(5), 1305 (2017).CrossRefGoogle Scholar
  13. 13.
    A. Tsitonaki, B. Petri, M. Crimi, H. Mosbæk, R. L. Siegrist and P. L. Bjerg, Crit. Rev. Environ. Sci. Technol., 40(1), 55 (2010).CrossRefGoogle Scholar
  14. 14.
    L. Zhou, Y. Zhang, R. Ying, G. Wang, T. Long, J. Li and Y. Lin, Environ. Sci. Pollut. Res. Int., 24(12), 11549 (2017).CrossRefGoogle Scholar
  15. 15.
    E. M. Kennedy and J. C. Mackie, Environ. Sci. Technol., 52(13), 7327 (2018).CrossRefGoogle Scholar
  16. 16.
    Z. H. U. Changyin, Z. H. U. Fengxiao, W. A. N. G. Fuwang, G. A. O. Juan, F. A. N. Guangping, Z. H. O. U. Dongmei and F. A. N. G. Guodong, Pedosphere, 27(3), 465 (2017).CrossRefGoogle Scholar
  17. 17.
    R. Li, L. He, T. Zhou, X. Ji, M. Qian, Y. Zhou and Q. Wang, Anal. Bioanal. Chem., 406(12), 2899 (2014).CrossRefGoogle Scholar
  18. 18.
    C. Liang, C. F. Huang, N. Mohanty and R. M. Kurakalva, Chemosphere, 73(9), 1540 (2008).CrossRefGoogle Scholar
  19. 19.
    APHA, Standard methods for the examination of water wastewater, 20th Ed., American Public Health Association (1998).Google Scholar
  20. 20.
    S. Das and S. Mishra, J. Environ. Chem. Eng., 5(1), 588 (2017).CrossRefGoogle Scholar
  21. 21.
    X. Wei, N. Gao, C. Li, Y. Deng, S. Zhou and L. Li, Chem. Eng. J., 285, 660 (2016).CrossRefGoogle Scholar
  22. 22.
    A. Ghauch, G. Ayoub and S. Naim, Chem. Eng. J., 228, 1168 (2013).CrossRefGoogle Scholar
  23. 23.
    I. Hussain, Y. Zhang, S. Huang and X. Du, Chem. Eng. J., 203, 269 (2012).CrossRefGoogle Scholar
  24. 24.
    L. W. Matzek and K. E. Carter, Chemosphere, 151, 178 (2016).CrossRefGoogle Scholar
  25. 25.
    C. Liang and H.-W. Su, Ind. Eng. Chem. Res., 48(11), 5558 (2009).CrossRefGoogle Scholar
  26. 26.
    Y. Wang, S. Y. Chen, X. Yang, X. F. Huang, Y. H. Yang, E. K. He, S. Wang and R. L. Qiu, Chem. Eng. J., 317, 613 (2017).CrossRefGoogle Scholar
  27. 27.
    C. C. Teh, N. A. Ibrahim and W. M. Z. W. Yunus, BioResources, 8(4), 5244 (2013).CrossRefGoogle Scholar
  28. 28.
    H. Kusic, I. Peternel, N. Koprivanac and A. Loncaric Bozic, J. Environ. Eng., 137(6), 454 (2010).CrossRefGoogle Scholar
  29. 29.
    G. P. Anipsitakis, D. D. Dionysiou and M. A. Gonzalez, Environ. Sci. Technol., 40(3), 1000 (2006).CrossRefGoogle Scholar
  30. 30.
    Y. Feng, R. D. Minard and J. M. Bollag, Environ. Toxicol. Chem., 17(5), 814 (1998).CrossRefGoogle Scholar
  31. 31.
    G. K. Low, S. R. McEvoy and R. W. Matthews, Environ. Sci. Technol., 25(3), 460 (1991).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Roaa Mogharbel
    • 1
  • Muqiong Liu
    • 2
  • Shengli Zou
    • 2
  • Cherie Yestrebsky
    • 1
    Email author
  1. 1.Environmental Chemistry LaboratoryUniversity of Central FloridaOrlandoUSA
  2. 2.Department of ChemistryUniversity of Central FloridaOrlandoUSA

Personalised recommendations