Advertisement

Synthesis of fly ash-based microporous copper silicate for CO2 capture from humid flue gases

  • Liying Liu
  • Xudong Chen
  • Yushun Wang
  • Tao DuEmail author
  • Gang LiEmail author
Article
  • 1 Downloads

Abstract

Conventional microporous adsorbents suffer from CO2 adsorption capacity reduction due to the presence of water vapor in real flue gases. Therefore, development of low-cost moisture-insensitive adsorbents is of great significance. In the present work, microporous copper silicate was synthesized from waste fly ash for the first time. The synthesis conditions were further optimized to obtain copper silicates with high purities. The as-synthesized product was characterized in terms of structural morphology, chemical composition, and surface properties. The CO2 and H2O adsorption properties of the prepared copper silicate were also investigated by single-component isotherm measurements and dynamic CO2/H2O binary breakthrough experiments. The results show that the as-synthesized fly ash-based copper silicate exhibited excellent CO2 adsorption properties even in the presence of water vapor, thus demonstrating promising potential as a moisture-insensitive adsorbent for directly capturing CO2 from humid flue gases.

Keywords

Copper Silicate Fly Ash Water Vapor CO2 Capture Humid Flue Gases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae and J. R. Long, Chem. Rev., 12, 24 (2012).Google Scholar
  2. 2.
    M. J. Tuinier, M. van Sint Annaland, G. J. Kramer and J. A. M. Kuipers, Chem. Eng. Sci., 65, 114 (2010).CrossRefGoogle Scholar
  3. 3.
    J. Shang, G. Li, R. Singh, P. Xiao, J. Z. Liu and P. Webley, J. Phys. Chem. C., 117, 12841 (2013).CrossRefGoogle Scholar
  4. 4.
    R. Khalilpour, K. Mumford, H. Zhai, A. Abbas, G. Stevens and E. S. Rubin, J. Clean. Prod., 103, 286 (2015).CrossRefGoogle Scholar
  5. 5.
    D. Aaron and C. Tsouris, Sep. Sci. Technol., 40, 321 (2005).CrossRefGoogle Scholar
  6. 6.
    X. He and M. B. Hagg, Membranes, 2, 706 (2012).CrossRefGoogle Scholar
  7. 7.
    D. Xu, P. Xiao, J. Zhang, G. Li, G. Xiao, P. A. Webley and Y. Zhai, Chem. Eng. J., 230, 64 (2013).CrossRefGoogle Scholar
  8. 8.
    C. Shen, J. Yu, P. Li, C. A. Grande and A. E. Rodrigues, Adsorption, 17, 179 (2010).CrossRefGoogle Scholar
  9. 9.
    Q. Zhao, F. Wu, K. Xie, R. Singh, J. Zhao, Y. Xiao and P. Webley, Chem. Eng. J., 336, 659 (2018).CrossRefGoogle Scholar
  10. 10.
    P. A. Webley and J. Zhang, Adsorption, 20, 201 (2014).CrossRefGoogle Scholar
  11. 11.
    S. G. Rodrigo, B. Youssef and S. Abdelhamid, Adsorption, 16, 567 (2010).CrossRefGoogle Scholar
  12. 12.
    X. Peng, W. C. Wang, R. S. Xue and Z. M. Shen, AIChE J., 52, 994 (2006).CrossRefGoogle Scholar
  13. 13.
    D. Saha, Z. Bao, F. Jia and S. Deng, Environ. Sci. Technol., 44, 1820 (2010).CrossRefGoogle Scholar
  14. 14.
    M. M. Lozinska, E. Mangano, J. P. Mowat, A. M. Shepherd, R. F. Howe, S. P. Thompson, J. E. Parker, S. Brandani and P. A. Wright, J. Am. Chem. Soc., 134, 17628 (2012).CrossRefGoogle Scholar
  15. 15.
    J. Shang, G. Li, R. Singh, Q. F. Gu, K. M. Nairn, T. J. Bastow, N. Medhekar, C. M. Doherty, A. J. Hill, J. Z. Liu and P. A. Webley, J. Am. Chem. Soc., 134, 19246 (2012).CrossRefGoogle Scholar
  16. 16.
    P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, Nature, 495, 80 (2013).CrossRefGoogle Scholar
  17. 17.
    O. Shekhah, Y. Belmabkhout, Z. J. Chen, V. Guillerm, A. Cairns, K. Adil and M. Eddaoudi, Nat. Commun., 5, 4228 (2014).CrossRefGoogle Scholar
  18. 18.
    S. C. Xiang, Y. B. He, Z. J. Zhang, H. Wu, W. Zhou, R. Krishna and B. L. Chen, Nat. Commun., 3, 954 (2012).CrossRefGoogle Scholar
  19. 19.
    Y. Wang and M. D. LeVan, J. Chem. Eng. Data, 55, 3189 (2010).CrossRefGoogle Scholar
  20. 20.
    S. U. Rege, R. T. Yang and M. A. Buzanowski, Chem. Eng. Sci., 55, 4827 (2000).CrossRefGoogle Scholar
  21. 21.
    S. J. Datta, C. Khumnoon, Z. H. Lee, W. K. Moon, S. Docao, T. H. Nguyen, I. C. Hwang, D. Moon, P. Oleynikov, O. Terasaki and K. B. Yoon, Science, 350, 302 (2015).CrossRefGoogle Scholar
  22. 22.
    G. Li, P. Xiao, J. Zhang, P. Webley and D. Xu, AIChE J., 60, 673 (2014).CrossRefGoogle Scholar
  23. 23.
    T. Du, X. Fang, Y. C. Wei, J. Shang, B. Zhang and L. Y. Liu, Energy Fuels, 31, 4301 (2017).CrossRefGoogle Scholar
  24. 24.
    Y. Wang, T. Du, X. Fang, D. Meng, G. Li and L. Liu, Korean J. Chem. Eng., 35, 1642 (2018).CrossRefGoogle Scholar
  25. 25.
    L. Y. Liu, R. Singh, G. Li, P. Xiao, P. Webley and Y. C. Zhai, J. Hazard. Mater., 195, 340 (2011).CrossRefGoogle Scholar
  26. 26.
    G. Li, P. Xiao and P. Webley, Langmuir, 25, 10666 (2009).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.State Environmental Protection Key Laboratory of Eco-IndustryNortheastern UniversityShenyangChina
  2. 2.ARC Centre for LNG Futuresthe University of Western AustraliaCrawleyAustralia

Personalised recommendations