Advertisement

Pd nanoparticles immobilized on TiO2 nanotubes-functionalized ceramic membranes for flow-through catalysis

  • Jianfeng Miao
  • Xiaoyue Liu
  • Hong Jiang
  • Yefei Liu
  • Rizhi ChenEmail author
Article

Abstract

A high performance catalytic membrane was fabricated with Pd nanoparticles supported by TiO2 nanotubes, where the TiO2 nanotubes were synthesized on the ceramic membrane via a simple hydrothermal etching. A flow-through catalytic membrane reactor was developed for testing the catalytic properties in the p-nitrophenol reduction. The effect of etching time was investigated in detail and an optimal etching time was determined to be 16 h. The characterization results highlighted that the as-prepared bouquet-like TiO2 nanotubes could significantly improve the loading amount and dispersity of Pd nanoparticles. The fabricated catalytic membrane exhibited considerably improved catalytic activity and stability, with a 100% conversion of p-nitrophenol and no loss in catalytic activity during five reaction cycles. The obtained activation energy was much lower than the values in literatures, implying that the p-nitrophenol reduction could take place more easily on our catalytic membranes compared to other catalysts.

Keywords

Catalytic Membrane Pd Nanoparticles Tio2 Nanotubes Ceramic Membranes p-Nitrophenol Reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_219_MOESM1_ESM.pdf (328 kb)
Supplementary material, approximately 228 KB.

References

  1. 1.
    N. Kageyama, P. Hacarlioglu, A. Takagaki, R. Kikuchi and S. T. Oyama, Sep. Purif. Technol., 185, 175 (2017).CrossRefGoogle Scholar
  2. 2.
    K. R. Hwang, S. K. Ihm and J. Park, Korean J. Chem. Eng., 27, 816 (2010).CrossRefGoogle Scholar
  3. 3.
    C. H. Kim, J. Y. Han, H. Lim, D. W. Kim and S. K. Ryi, Korean J. Chem. Eng., 34, 1260 (2017).CrossRefGoogle Scholar
  4. 4.
    V. M. Gryaznov, Russ. Chem. Rev., 32, 188 (1963).CrossRefGoogle Scholar
  5. 5.
    L. Meng and T. Tsuru, Catal. Today, 268, 3 (2016).CrossRefGoogle Scholar
  6. 6.
    J. S. Choi, I. K. Song and W. Y. Lee, Korean J. Chem. Eng., 17, 280 (2000).CrossRefGoogle Scholar
  7. 7.
    Y. M. Lin, G. L. Lee and M. H. Rei, Catal. Today, 44, 343 (1998).CrossRefGoogle Scholar
  8. 8.
    M. Vospernik, A. Pintar, G. Berci and J. Levec, Catal. Today, 79-80, 169 (2003).CrossRefGoogle Scholar
  9. 9.
    M. Liu, X. Zhu, R. Chen, Q. Liao, H. Feng and L. Li, Chem. Eng. J., 301, 35 (2016).CrossRefGoogle Scholar
  10. 10.
    Z. H. Zhao, G. H. Tong and X. Y. Tan, J. Chem. Technol. Biotechnol., 91, 2298 (2016).CrossRefGoogle Scholar
  11. 11.
    N. Diban, A. T. Aguayo, J. Bilbao, A. Urtiaga and I. Ortiz, Ind. Eng. Chem. Res., 52, 10342 (2013).CrossRefGoogle Scholar
  12. 12.
    M. Liu, Z. P. Zhao, K. C. Chen and W. F. Liu, Catal. Commun., 64, 70 (2015).CrossRefGoogle Scholar
  13. 13.
    R. L. Huang, H. X. Zhu, R. X. Su, W. Qi and Z. M. He, Environ. Sci. Technol., 50, 11263 (2016).CrossRefGoogle Scholar
  14. 14.
    J. N. Armor, J. Membr. Sci., 147, 217 (1998).CrossRefGoogle Scholar
  15. 15.
    M. D. Wales, L. B. Joos, W. A. Traylor, P. Pfrommb and M. Rezac, Catal. Today, 268, 12 (2016).CrossRefGoogle Scholar
  16. 16.
    X. Y. Wang, J. C. Yang, M. P. Zhu and F. Li, J. Taiwan Inst. Chem. E., 44, 386 (2013).CrossRefGoogle Scholar
  17. 17.
    H. Mahdavi, A. Rahimi and T. Shahalizade, J. Polym. Res., 23, 1 (2016).CrossRefGoogle Scholar
  18. 18.
    R. Z. Chen, Y. G. Jiang, W. H. Xing and W. Q. Jin, Ind. Eng. Chem. Res., 52, 5002 (2013).CrossRefGoogle Scholar
  19. 19.
    S. Zhang, H. Jiang, Y. F. Liu and R. Z. Chen, Can._J. Chem. Eng., 95, 2374 (2017).CrossRefGoogle Scholar
  20. 20.
    Y. Du and R. Z. Chen, Korean J. Chem. Eng., 32, 1759 (2015).CrossRefGoogle Scholar
  21. 21.
    L. G. Dou and H. Zhang, J. Mater. Chem. A., 4, 18990 (2016).CrossRefGoogle Scholar
  22. 22.
    A. Shukla, R. K. Singha, T. Sasaki and R. Bal, Green Chem., 17, 785 (2015).CrossRefGoogle Scholar
  23. 23.
    M. Afrand, D. Toghraie and B. Ruhani, Exp. Therm Fluid Sci., 77, 38 (2016).CrossRefGoogle Scholar
  24. 24.
    M. Boron, A. Corma, F. Illas, J. Radill, T. Ródenas and M. J. Sabater, J. Catal., 278, 50 (2011).CrossRefGoogle Scholar
  25. 25.
    H. Huang, L. Pan, C. K. Lim, H. Gong, J. Guo, M. S. Tse and O. K. Tan, Small, 9, 3153 (2013).CrossRefGoogle Scholar
  26. 26.
    D. Li, X. W. Cheng, X. J. Yu and Z. P. Xing, Chem. Eng. J., 279, 994 (2015).CrossRefGoogle Scholar
  27. 27.
    R. S. Zeng, K. Li, X. Sheng, L. P. Chen, H. J. Zhang and X. J. Feng, Chem. Commun., 52, 4045 (2016).CrossRefGoogle Scholar
  28. 28.
    J. B. Zhong, Y. Lu, W. D. Jiang, Q. M. Meng, X. Y. He, J. Z. Li and Y. Q. Chen, J. Hazard. Mater., 168, 1632 (2009).CrossRefGoogle Scholar
  29. 29.
    M. Q. Lv, D. J. Zheng, M. D. Ye, L. Sun, J. Xiao, W. X. Guo and C. J. Lin, Nanoscale, 4, 5872 (2012).CrossRefGoogle Scholar
  30. 30.
    M. Yurderi, A. Bulut, M. Zahmakiran, M. Gülcan and S. Özkar, Appl. Catal. B: Environ., 160, 534 (2014).CrossRefGoogle Scholar
  31. 31.
    A. Mansouri and N. Semagina, Appl. Catal. A, 543, 43 (2017).CrossRefGoogle Scholar
  32. 32.
    L. Liu, J. S. Qian, B. Li, Y. M. Cui, X. F. Zhou, X. F. Guo and W. P. Ding, Res. Chem. Intermed., 46, 1569 (2010).Google Scholar
  33. 33.
    R. Z. Chen, Y. G. Jiang, W. H. Xing and W. Q. Jin, Ind. Eng. Chem. Res., 50, 4405 (2011).CrossRefGoogle Scholar
  34. 34.
    C. Ao, P. F. Tian, L. Ouyang, G. J. Da, X. Y. Xu, J. Xu and Y. F. Han, Catal. Sci. Technol., 6, 5060 (2016).CrossRefGoogle Scholar
  35. 35.
    G. W. Zhan, Y. L. Hong, F. F. Lu, A. R. Ibrahim, M. M. Du, D. H. Sun, J. L. Huang, Q. B. Li and J. Li, J. Mol. Catal. A: Chem., 366, 215 (2013).CrossRefGoogle Scholar
  36. 36.
    V. K. Gupta, N. Atar, M. L. Yola, Z. Ustundag and L. Uzun, Water Res., 48, 210 (2014).CrossRefGoogle Scholar
  37. 37.
    Y. C. Chang and D. H. Chen, J. Hazard. Mater., 165, 664 (2009).CrossRefGoogle Scholar
  38. 38.
    J. Feng, L. Su, Y. H. Ma, C. L. Ren, Q. Guo and X. G. Chen, Chem. Eng. J., 221, 16 (2013).CrossRefGoogle Scholar
  39. 39.
    Z. Y. Wang, X. Chen, K. Li, S. Y. Bi, C. L. Wu and L. Chen, J. Membr. Sci., 496, 95 (2015).CrossRefGoogle Scholar
  40. 40.
    S. Y. Bi, K. Li, X. Chen, W. G. Fu, L. Chen, H. Y. Sheng and Q. Yang, Polym. Compos., 35, 2251 (2015).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Jianfeng Miao
    • 1
  • Xiaoyue Liu
    • 1
  • Hong Jiang
    • 1
  • Yefei Liu
    • 1
  • Rizhi Chen
    • 1
    Email author
  1. 1.State Key Laboratory of Materials-Oriented Chemical EngineeringNanjing Tech UniversityNanjingP. R. China

Personalised recommendations