Advertisement

Performance evaluation of glucose oxidation reaction using biocatalysts adopting different quinone derivatives and their utilization in enzymatic biofuel cells

  • Kyuhwan Hyun
  • Suhyeon Kang
  • Yongchai KwonEmail author
Article
  • 1 Downloads

Abstract

Glucose oxidase (GOx) and four different quinone derivatives (p-benzoquinone (BQ), naphthoquinone (NQ), anthraquinone (AQ) and 1,5-Dihydroxyanthraquinone (15DHAQ)) based biocomposites were embedded in polyethyleneimine (PEI) and then immobilized on carbon nanotube (CNT) substrate (CNT/PEI/Quinone/GOx). These catalysts were then used as the anodic biocatalysts for the enzymatic biofuel cell (EBC). According to the performance investigations of catalysts, the catalytic activity for glucose oxidation reaction (GOR) representing the electron transfer rate between GOx and glucose fuel is mostly enhanced in CNT/PEI/NQ/GOx. It is because two benzene rings of NQ play a role in attracting and releasing electrons effectively, increasing the catalytic activity for GOR, while other quinones have problems about attracting electrons (AQ and 15DHAQ) and wrong position of the reactive site for electron transfer (BQ). Excellent electron transfer rate constant (1.1 s-1) and Michaelis-Menten constant (0.99mM) are outstanding evidence for that. Furthermore, when the catalyst is utilized for EBC, high power density (57.4 μWcm-2) and high open circuit voltage (0.64 V) are accomplished.

Keywords

Glucose Oxidase Quinone Derivatives Enzymatic Biofuel Cell Polyethylenimine Naphthoquinone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. H. Hyun, S. W. Han, W. G. Koh and Y. Kwon, J. Power Sources, 286, 197 (2015).CrossRefGoogle Scholar
  2. 2.
    S. D. Minteer, B. Y. Liaw and M. J. Cooney, Curr. Opin. Biotechnol., 18, 228 (2007).CrossRefGoogle Scholar
  3. 3.
    C. Abreu, Y. Nedellec, O. Ondel, F. Buret, S. Cosnier, A. Le Goff and M. Holzinger, J. Power Sources, 392, 176 (2018).CrossRefGoogle Scholar
  4. 4.
    K. Hyun, S. W. Han, W. G. Koh and Y. Kwon, Int. J. Hydrogen Energy, 40, 2199 (2015).CrossRefGoogle Scholar
  5. 5.
    M. Christwardana, J. Ji, Y. Chung and Y. Kwon, Korean J. Chem. Eng., 34, 2916 (2017).CrossRefGoogle Scholar
  6. 6.
    M. Wooten, S. Karra, M. Zhang and W. Gorski, Anal. Chem., 86, 752 (2013).CrossRefGoogle Scholar
  7. 7.
    M. Šulka, M. Pitoňák, P. Neogrády and M. Urban, Int. J. Quantum Chem., 108, 2159 (2008).CrossRefGoogle Scholar
  8. 8.
    N. Driver and P. Jena, Int. J. Quantum Chem., 118, e25504 (2018).CrossRefGoogle Scholar
  9. 9.
    I. Katsounaros, W. B. Schneider, J. C. Meier, U. Benedikt, P. U. Biedermann, A. A. Auer and K. J. Mayrhofer, Phys. Chem. Chem. Phys., 14, 7384 (2012).CrossRefGoogle Scholar
  10. 10.
    C. Bunte, L. Hussein and G. A. Urban, J. Power Sources, 247, 579 (2014).CrossRefGoogle Scholar
  11. 11.
    E. Nazaruk, S. Smoliński, M. Swatko-Ossor, G. Ginalska, J. Fiedurek, J. Rogalski and R. Bilewicz, J. Power Sources, 183, 533 (2008).CrossRefGoogle Scholar
  12. 12.
    Y. Wang and Y. Hasebe, J. Electrochem. Soc., 159, 110 (2012).CrossRefGoogle Scholar
  13. 13.
    J. B. Conant and L. F. Fieser, J. Am. Chem. Soc., 46, 1858 (1924).CrossRefGoogle Scholar
  14. 14.
    M. Latifatu, J. H. Park, J. M. Ko and J. Park, J. Ind. Eng. Chem., 63, 12 (2018).CrossRefGoogle Scholar
  15. 15.
    E. Yuan, C. Wu, G. Liu, G. Li and L. Wang, J. Ind. Eng. Chem., 66, 158 (2018).CrossRefGoogle Scholar
  16. 16.
    H. Görner, Photochem. Photobiol. Sci., 3, 933 (2004).CrossRefGoogle Scholar
  17. 17.
    M. J. Lee, N. H. Chun, H. C. Kim, M. J. Kim, P. Kim, M. Y. Cho and G. J. Choi, Korean J. Chem. Eng., 35, 984 (2018).CrossRefGoogle Scholar
  18. 18.
    S. Nawar, B. Huskinson and M. Aziz, Mater. Res. Soc. Symp. Proc., 1491 (2013).Google Scholar
  19. 19.
    M. Uchimiya and A. T. Stone, Chemosphere, 77, 451 (2009).CrossRefGoogle Scholar
  20. 20.
    R. D. Milton, D. P. Hickey, S. Abdellaoui, K. Lim, F. Wu, B. Tan and S. D. Minteer, Chem. Sci., 6, 4867 (2015).CrossRefGoogle Scholar
  21. 21.
    J. Ji, H. I. Joh, Y. Chung and Y. Kwon, Nanoscale, 9, 15998 (2017).CrossRefGoogle Scholar
  22. 22.
    Y. Chung, K. Hyun and Y. Kwon, Nanoscale, 8, 1161 (2016).CrossRefGoogle Scholar
  23. 23.
    M. Razzaghi, A. Karimi, H. Aghdasinia and M. T. Joghataei, Korean J. Chem. Eng., 34, 2870 (2017).CrossRefGoogle Scholar
  24. 24.
    Y. O. Im, S. H. Lee, S. U. Yu, J. Lee and K. H. Lee, Korean J. Chem. Eng., 34, 898 (2017).CrossRefGoogle Scholar
  25. 25.
    K. S. Hwang, H. Y. Park, J. H. Kim and J. Y. Lee, Korean J. Chem. Eng., 35, 798 (2018).CrossRefGoogle Scholar
  26. 26.
    A. A. Adewunmi, S. Ismail, A. S. Sultan and Z. Ahmad, Korean J. Chem. Eng., 34, 1638 (2017).CrossRefGoogle Scholar
  27. 27.
    Y. Ahn, Y. Chung and Y. Kwon, Korean Chem. Eng. Res., 55, 258 (2017).Google Scholar
  28. 28.
    S. Kang, K. S. Yoo, Y. Chung and Y. Kwon, J. Ind. Eng. Chem., 62, 329 (2018).CrossRefGoogle Scholar
  29. 29.
    C. Noh, S. Moon, Y. Chung and Y. Kwon, J. Mater. Chem. A, 5, 21334 (2017).CrossRefGoogle Scholar
  30. 30.
    C. Noh, B. W. Kwon, Y. Chung and Y. Kwon, J. Power Sources, 406, 26 (2018).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.Graduate School of Energy and EnvironmentSeoul National University of Science and TechnologySeoulKorea

Personalised recommendations