Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 4, pp 529–539 | Cite as

Phenol removal from aqueous solution using amino modified silica nanoparticles

  • Sayed SalehEmail author
  • Alaa Younis
  • Reham Ali
  • Eman Elkady
Environmental Engineering
  • 32 Downloads

Abstract

Phenols constitute a widespread class of water pollutants that are generated from many industries and are known to cause a significant threat to the aquatic environment. Phenols are, therefore, considered as dangerous pollutants by global international quality organizations. This has led to a growing demand for an efficient technology for phenol removal from wastewater. Different sizes of amino-modified silica nanoparticles (SiNPs) were synthesized with 10–40nm in diameter (AMS-10 to 40), and their properties were characterized in terms of size and surface modification using transmission electron microscope (TEM), dynamic light scattering (DLS), zeta potential, elemental analyses (C, H, N), thermal gravimetric analysis (TGA) and Fourier transform infra-red (FTIR). The adsorption process was carried out utilizing batch mode experiment; the influence of various factors including pH of the medium, the contact time, the initial concentration of the adsorbate and the dose of the adsorbent on the phenol adsorption efficiency of SiNPs of various sizes were investigated. Phenol removal efficiency was found to be size-dependent, such that the phenol adsorption capacity of the SiNPs was in the following order: AMS-10>AMS-20>AMS-30>AMS-40 nm. The adsorption capacity and binding coefficient were calculated to be 35.2mg/g and 0.192mg/L, respectively, for AMS-10. The amino-modified SiNPs were found to be promising adsorbents for the phenol ions removal from the aqueous medium.

Keywords

Silica Nanoparticles Surface Modification Phenol Removal Water Treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Zhang, J. Liu, C. Tang, J. Lv, H. Zhong, Y. J. Zhao and X. Wang, Appl. Clay Sci., 51, 68 (2011).CrossRefGoogle Scholar
  2. 2.
    T. O. Said, R. S. Farag, A. M. Younis and M. A. Shreadah, Bullet. Environ. Contam. Toxic., 77, 451 (2006).CrossRefGoogle Scholar
  3. 3.(a)
    A. M. Younis and S. M. Nafea, World Appl. Sci. J., 19, 1423 (2012)Google Scholar
  4. (b).
    B. Gulay, A. Aydin and A. M. Yakup, J. Hazard. Mater., 244, 528 (2013).Google Scholar
  5. 4.
    G. Busca, S. Berardinelli, C. Resini and L. Arrighi, J. Hazard. Mater., 160, 265 (2008).CrossRefGoogle Scholar
  6. 5.
    Federal Register, Environmental Protection Agency, Part VIII, 40 CFR Part 136, 58 (1984).Google Scholar
  7. 6.
    Z.-A. Mirian and A. Nezamzadeh-Ejhieh, Desalination and Water Treatment, 1 (2015).Google Scholar
  8. 7.
    M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariňas and A. M. Mayes, Nature, 452, 301 (2008).CrossRefGoogle Scholar
  9. 8.
    A. B. Dichiara, S. J. Weinstein and R. E. Rogers, Ind. Eng. Chem. Res., 54(34), 8579 (2015).CrossRefGoogle Scholar
  10. 9.
    P. Canizares, M. Carmona, O. Baraga and M. A. Rodrigo, J. Hazard. Mater., 131, 243 (2006).CrossRefGoogle Scholar
  11. 10.
    A. Dabrowski, P. Podkoscielny, Z. Hubicik and M. Barczak, Chemosphere, 58, 1049 (2005).CrossRefGoogle Scholar
  12. 11.
    Z. Lazarova and S. Boyadzhieva, Chem. Eng. J., 100, 129 (2004).CrossRefGoogle Scholar
  13. 12.
    Y. A. Alhamed, Bulg. Chem. Comm., 40, 26 (2008).Google Scholar
  14. 13.
    F. A. Banat, B. Al-Bashir, S. Al-Asheh and O. Hayajneh, Environ. Pollut., 107, 391 (2002).CrossRefGoogle Scholar
  15. 14.
    S. Nomanbahay and K. Palanisamy, Electron. J. Biotechnol., 8, 43 (2005).Google Scholar
  16. 15.
    N. S. Alderman, A. L. N’Guessan and M. C. Nyman, J. Hazard. Mater., 146, 652 (2007).CrossRefGoogle Scholar
  17. 16.
    N. Sona, T. Yamamoto, D. Yamamoto and M. Nakaiwa, Chem. Eng. Process., 46, 513 (2007).CrossRefGoogle Scholar
  18. 17.
    S. Hydari, H. Sharififard, M. Nabavinia and M. Reza, Chem. Eng. J., 193, 276 (2012).CrossRefGoogle Scholar
  19. 18.
    K. Bhattacharyya and S. Gupta, Colloids Surf., A, 277, 191 (2007).CrossRefGoogle Scholar
  20. 19.
    K. A. Halouli and N. M. Drawish, Sep. Sci. Technol., 30, 3313 (1995).CrossRefGoogle Scholar
  21. 20.
    S. Mitra, Sample Preparation Techniques in Analytical Chemistry, Wiley, Hoboken, New Jersey (2003).CrossRefGoogle Scholar
  22. 21.
    D. K. Singh and B. Srivastava, J. Sci. Ind. Res., 61, 208 (2002).Google Scholar
  23. 22.
    S. Kulkarni and J. Kaware, Int. J. Sci. Eng. Res., 1, 88 (2013).Google Scholar
  24. 23.
    A. M. Younis, E. M. A. Nafea, Y. Y. I. Mosleh and M. S. Hefnawy, J. Medit. Ecol., 14, 55 (2016).Google Scholar
  25. 24.
    F. Ektefa, S. Javadian and M. Rahmati, J. Taiwan Inst. Chem. Engineers, 88, 104 (2018).CrossRefGoogle Scholar
  26. 25.
    N. Tancredi, N. Medero, F. Moller, J. Piriz, C. Plada and T. Cordero, J. Colloid Interface Sci., 279, 357 (2004).CrossRefGoogle Scholar
  27. 26.
    K. Yang, W. Wu, Q. Jing and L. Zhu, Environ. Sci. Technol., 42, 7931 (2008).CrossRefGoogle Scholar
  28. 27.
    B. Pan, W. Zhang, Q. Zhang and S. Zheng, J. Hazard. Mater., 157, 293 (2008).CrossRefGoogle Scholar
  29. 28.
    I. Vázquez, J. Rodriguez-Iglesias, E. Maranon, L. Castrillon and M. Alvarez, J. Hazard. Mater., 147, 395 (2005).CrossRefGoogle Scholar
  30. 29.
    Z. U. Ahmad, Q. Lian, M. E. Zappi, P. R. Buchireddy and D. D. Gang, J. Environ. Sci., 75, 307 (2019).CrossRefGoogle Scholar
  31. 30.
    Y. Ku and K. C. Lee, J. Hazard. Mater. B., 80, 59 (2000).CrossRefGoogle Scholar
  32. 31.
    A. Chen, Y. Li, Y. Yu, Y. Li, K. Xia, Y. Wang, S. Li and L. Zhang, Carbon, 103, 157 (2016).CrossRefGoogle Scholar
  33. 32.
    M. Ebrahimi-Gatkash, H. Younesi, A. Shahbazi and A. Heidari, Appl. Water Sci., 7(4), 1887 (2017).CrossRefGoogle Scholar
  34. 33.
    K. H. Radeke, D. Loseh, K. Struve and E. Weiss, Zeolites, 13, 69 (1993).CrossRefGoogle Scholar
  35. 34.
    S. Kim and E. Marand, Micropor. Mesopor. Mater., 114, 129 (2008).CrossRefGoogle Scholar
  36. 35.
    V. M. Martínez, V. P. Sánchez and J. M. M. Martínez, Eur. Polym. J., 44, 3146 (2008).CrossRefGoogle Scholar
  37. 36.
    S. Shiomi, M. Kawamori, S. Yagi and E. Matsubara, J. Colloid Interface Sci., 460, 47 (2015).CrossRefGoogle Scholar
  38. 37.
    C. Chen, R. S. Justice, D. W. Schaefer and J. W. Baur, Polymer, 49, 3805 (2008).CrossRefGoogle Scholar
  39. 38.
    S. M. C. Ritchie, L. G. Bachas, T. Olin, S. K. Sikdar and D. Bhattacharyya, Langmuir, 15, 6346 (1999).CrossRefGoogle Scholar
  40. 39.
    S. V. Mattigod, X. Feng, G. E. Fryxell, J. Liu and M. Gong, Sep. Sci. Technol., 34, 2329 (1999).CrossRefGoogle Scholar
  41. 40.
    W. Yantasee, Y. Lin, G. E. Fryxell, B. J. Busche and J. C. Birnbaum, Sep. Sci. Technol., 38, 3809 (2003).CrossRefGoogle Scholar
  42. 41.
    S. Iwamoto, W. Tanakulrungsank, M. Inoue, K. Kagawa and P. Praserthdam, J. Mat. Sci. Lett., 19, 1439 (2000).CrossRefGoogle Scholar
  43. 42.
    S. M. Saleh, R. Müller, H. S. Mader, A. Duerkop and O. S. Wolfbeis, Anal. Bioanal. Chem., 398, 1615 (2010).CrossRefGoogle Scholar
  44. 43.
    H. S. Mader, X. Li, S. M. Saleh, M. Link, P. Kele and O. S. Wolfbeis, Ann. N. Y. Acad. Sci., 1130, 213 (2008).CrossRefGoogle Scholar
  45. 44.
    W. Stöber and A. Fink, J. Colloid Interface Sci., 26, 62 (1968).CrossRefGoogle Scholar
  46. 45. (a)
    D. E. Achatz, F. J Heiligtag, X. Li, M. Link and O. S. Wolfbeis, Sens. Act. B: Chem., 150, 211 (2010)CrossRefGoogle Scholar
  47. (b).
    R. Ali, S. M. Saleh and R. F. M. Elshaarawy, RSC Adv., 6(90), 86965 (2010).CrossRefGoogle Scholar
  48. 46.
    Malvern Instruments Ltd., https://www.malvernpanalytical.com/en. Accessed February 2019.
  49. 47.
    Jasco Inc. http://www.jascoinc.com/spectroscopy/ft-ir-4000-series. Accessed February 2019.
  50. 48.
    R. W. Martin, Analyt. Chem., 21, 1419 (1949).CrossRefGoogle Scholar
  51. 49.
    M. Qhobosheane, S. Santra, P. Zhang and W. Tan, Analyst, 126, 1274 (2001).CrossRefGoogle Scholar
  52. 50.
    S. Bhakta, C. K. Dixit, I. Bist, K. A. Jalil, S. L. Suib and J. F. Rusling, Mater. Res. Express, 3(7), 075025 (2016).CrossRefGoogle Scholar
  53. 51.
    U. Thawornchaisit and K. Pakulanon, Bioresour. Technol., 98, 140 (2007).CrossRefGoogle Scholar
  54. 52.
    A. Bhatnagar, J. Hazard. Mater., 139, 93 (2007).CrossRefGoogle Scholar
  55. 53.
    N. F. Zainudin, A. Z. Abdullah and A. R. Mohamed, J. Hazard. Mater., 174, 299 (2010).CrossRefGoogle Scholar
  56. 54.
    S. J. Allen, Q. Gan, R. Matthews and P. A. Johnson, J. Colloid Interface Sci., 286, 101 (2005).CrossRefGoogle Scholar
  57. 55.
    H. A. Asmaly, B. Abussaud, T. A. Saleh, V. K. Gupta and M. A. Atieh, J. Saudi Chem. Soc., 19, 511 (2015).CrossRefGoogle Scholar
  58. 56.
    G. Yang, L. Tang, G. Zeng, Y. Cai, J. Tang, Y. Pang, Y. Zhou, Y. Liu, J. Wang, S. Zhang and W. Xiong, Chem. Eng. J., 259, 854 (2015).CrossRefGoogle Scholar
  59. 57.
    A. M. Younis, A. V. Kolesnikov and A. V. Desyatov, Am. J. Anal. Chem., 5(17), 1273 (2014).CrossRefGoogle Scholar
  60. 58.
    M. Anbia and S. Khoshbooei, J. Nanostruct. Chem., 5, 139 (2005).CrossRefGoogle Scholar
  61. 59.
    Y. F. Lin and J. L. Chen, J. Colloid Interface Sci., 420, 74 (2014).CrossRefGoogle Scholar
  62. 60.
    S. Kumar, S. N. Upadhyay and Y. D. Upadhya, Chem. Tech. Biotechnol., 37, 281 (1987).CrossRefGoogle Scholar
  63. 61.
    A. Kuleyin, J. Hazard. Mater., 144, 307 (2007).CrossRefGoogle Scholar
  64. 62.
    P. Pal and R. Kumar, Sep. Purif. Rev., 43(2), 89 (2014).CrossRefGoogle Scholar
  65. 63.
    X. Zhang, J. Zhao, L. Cheng, C. Lu, Y. Wang, X. He and W. Zhang, RSC Adv., 4, 55195 (2015).CrossRefGoogle Scholar
  66. 64.
    V. C. Srivastava, M. M. Swamy, I. D. Mall, B. Prasad and I. M. Mishra, Colloids Surf., A: Physicochem. Eng. Aspects, 272, 89 (2006).CrossRefGoogle Scholar
  67. 65.
    B. H. Hameed and A. A. Rahman, J. Hazard. Mater., 60, 576 (2008).CrossRefGoogle Scholar
  68. 66.
    H. Yuh-Shan, Scientometrics, 59(1), 171 (2004).CrossRefGoogle Scholar
  69. 67.
    Y. S. Ho, Water Res., 40(1), 119 (2006).CrossRefGoogle Scholar
  70. 68.
    C. Tien and B. V. Ramarao. Sep. Purif. Technol., 136, 303 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Sayed Saleh
    • 1
    • 2
    Email author
  • Alaa Younis
    • 3
  • Reham Ali
    • 2
    • 4
  • Eman Elkady
    • 5
  1. 1.Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining EngineeringSuez UniversitySuezEgypt
  2. 2.Chemistry Department, Faculty of ScienceQassim UniversityBuraidahSaudi Arabia
  3. 3.Aquatic Environment Department, Faculty of Fish ResourcesSuez UniversitySuezEgypt
  4. 4.Chemistry Department, Faculty of ScienceSuez UniversitySuezEgypt
  5. 5.Marine Chemistry lab, National Institute of Oceanography & FisheriesSuezEgypt

Personalised recommendations