Advertisement

New insights into mechanistic aspects and structure of polycrystalline Cu/Cr/Ni metal oxide nanoclusters synthesized using Eryngium campestre and Froriepia subpinnata

  • Zahra Vaseghi
  • Omid TavakoliEmail author
  • Ali NematollahzadehEmail author
Article
  • 2 Downloads

Abstract

Novel nanoclusters (NCs) of Cu/Cr/Ni/O were produced by a green synthesis approach using leaf extracts of E. campestre and F. subpinnata at room temperature and pH 7. Characterization of the produced NCs using EDS, XRD, and FESEM revealed that E. campestre results in CuO-Cr2O3-NiO nanocomposites with average crystallite size of 29.2 nm, while binary and ternary Cu-Cr-Ni-O nanoalloys of averaged 9.8 nm crystallite size are produced using F. subpinnata leaf extract. In addition, bioreduction mechanism of the metal ions was investigated for both plant extracts by evaluating total phenolics/total flavonoids, HPLC chromatograms of the leaf extracts, and FTIR spectra of the extracts before and after the bioreduction reaction. It was found that phenolic acids are the main responsibility for the bioreduction of the metal ions. In particular, chlorogenic acid, rosmarinic acid, and syringic acids for the nanoalloys produced by reducing potential of F. subpinnata, and rosmarinic acid for the nanocomposites synthesized using E. campestre were identified as the main reducing agents. FTIR studies revealed that in CuO-Cr2O3-NiO nanocomposites, aliphatic and aldehyde amine groups and in Cu-Cr-Ni-O nanoalloys, aliphatic and aldehyde amine, and nitrile groups act as both capping and stabilizing ligands.

Keywords

Nanoalloy Nanocomposite Mechanism of Bioreduction Plant Leaf Extract Morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Vaseghi, A. Nematollahzadeh and O. Tavakoli, Rev. Chem. Eng., 34, 529 (2018).CrossRefGoogle Scholar
  2. 2.
    N. Patra, A. C. Taviti, A. Sahoo, A. Pal, T. K. Beuria, A. Behera and S. Patra, RSC Adv., 7, 35111 (2017).CrossRefGoogle Scholar
  3. 3.
    S. D. Lankiang, S. Baranton and C. Coutanceau, Electrochim. Acta, 242, 287 (2017).CrossRefGoogle Scholar
  4. 4.
    Z. Gu, H. Xu, D. Bin, B. Yan, S. Li, Z. Xiong, K. Zhang and Y. Du, Colloids Surf., A, 529, 651 (2017).CrossRefGoogle Scholar
  5. 5.
    Y. Cao, M. S. Denny Jr., J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich and D. Radu, J. Am. Chem. Soc., 134, 15644 (2012).CrossRefGoogle Scholar
  6. 6.
    M. Moran, N. Rosell, G. Ruano, M. Busquets and M. Vinardell, Colloids Surf., B, 134, 156 (2015).CrossRefGoogle Scholar
  7. 7.
    J. Gu, X. Chen, H. Xin, X. Fang and X. Sha, Int. J Pharm., 461, 559 (2014).CrossRefGoogle Scholar
  8. 8.
    S.-N. He, Y.-L. Li, J.-J. Yan, W. Zhang, Y.-Z. Du, H.-Y. Yu, F.-Q. Hu and H. Yuan, Int. J. Nanomed., 8, 2859 (2013).Google Scholar
  9. 9.
    F. Shaikh, L. Chikhale, I. Mulla and S. Suryavanshi, Powder Technol., 326, 479 (2018).CrossRefGoogle Scholar
  10. 10.
    P. Elavarthi, A. A. Kumar, G. Murali, D. A. Reddy and K. Gunasekhar, J. Alloys Compd., 656, 510 (2016).CrossRefGoogle Scholar
  11. 11.
    W. Weihua, T. Xuelin, C. Kai and C. Gengyu, Colloids Surf., A, 273, 35 (2006).CrossRefGoogle Scholar
  12. 12.
    M.-L. Wu, D.-H. Chen and T.-C. Huang, Langmuir, 17, 3877 (2001).CrossRefGoogle Scholar
  13. 13.
    K. Rawat and P. Shishodia, Adv. Powder Technol., 28, 611 (2017).CrossRefGoogle Scholar
  14. 14.
    Y. Xia, B. Sun, Y. Wei, B. Tao and Y. Zhao, J. Alloys Compd., 705, 58 (2017).CrossRefGoogle Scholar
  15. 15.
    M. P. Gashti, M. Burgener, M. Stir and J. Hulliger, J. Colloid Interface Sci., 431, 149 (2014).CrossRefGoogle Scholar
  16. 16.
    M. Parvinzadeh Gashti, M. Helali and S. Karimi, Int. J. Appl. Ceram. Technol., 13, 1069 (2016).CrossRefGoogle Scholar
  17. 17.
    M. P. Gashti, M. Stir and J. Hulliger, New J. Chem., 40, 5495 (2016).CrossRefGoogle Scholar
  18. 18.
    M. P. Gashti and A. Shokri, J. Aust. Ceram. Soc., 54, 601 (2018).CrossRefGoogle Scholar
  19. 19.
    Y. Dong, Z. Yang, Q. Sheng and J. Zheng, Colloids Surf., A, 538, 371 (2018).CrossRefGoogle Scholar
  20. 20.
    G. Wang, Z. Wen, L. Du, S. Li, S. Ji and J. Sun, RSC Adv., 6, 39728 (2016).CrossRefGoogle Scholar
  21. 21.
    J. Liu, F. He, T. M. Gunn, D. Zhao and C. B. Roberts, Langmuir, 25, 7116 (2009).CrossRefGoogle Scholar
  22. 22.
    H. Duan, D. Wang and Y. Li, Chem. Soc. Rev., 44, 5778 (2015).CrossRefGoogle Scholar
  23. 23.
    F. J. Osonga, I. Yazgan, V. Kariuki, D. Luther, A. Jimenez, P. Le and O. A. Sadik, RSC Adv., 6, 2302 (2016).CrossRefGoogle Scholar
  24. 24.
    K. J. Rao and S. Paria, ACS Appl. Mater. Interfaces, 7, 14018 (2015).CrossRefGoogle Scholar
  25. 25.
    G. Zhan, J. Huang, M. Du, I. Abdul-Rauf, Y. Ma and Q. Li, Mater. Lett., 65, 2989 (2011).CrossRefGoogle Scholar
  26. 26.
    B. Xia, F. He and L. Li, Langmuir, 29, 4901 (2013).CrossRefGoogle Scholar
  27. 27.
    Z. Vaseghi, A. Nematollahzadeh and O. Tavakoli, J. Taiwan Inst. Chem. Eng. (2018) HYPERLINK "https://doi.org/10.016/j.jtice.2018.10.020" doi.org/10.1016/j.jtice.2018.10.020.Google Scholar
  28. 28.
    S. S. Shankar, A. Rai, A. Ahmad and M. Sastry, J. Colloid Interface Sci., 275, 496 (2004).CrossRefGoogle Scholar
  29. 29.
    J. Kesharwani, K. Y. Yoon, J. Hwang and M. Rai, J. Bionanosci., 3, 39 (2009).CrossRefGoogle Scholar
  30. 30.
    J. Kasthuri, K. Kathiravan and N. Rajendiran, J. Nanoparticle Res., 11, 1075 (2009).CrossRefGoogle Scholar
  31. 31.
    Z. Vaseghi, O. Tavakoli and A. Nematollahzadeh, J. Environ. Chem. Eng., 6, 1898 (2018).CrossRefGoogle Scholar
  32. 32.
    Z. Vaseghi, O. Tavakoli and A. Nematollahzadeh, Int. Proc Chem. Biol. Environ. Eng., 101, 62 (2017).Google Scholar
  33. 33.
    V. L. Singleton and J. A. Rossi, Am. J. Enol. Vitic., 16, 144 (1965).Google Scholar
  34. 34.
    J. Zhishen, T. Mengcheng and W. Jianming, Food Chem., 64, 555 (1999).CrossRefGoogle Scholar
  35. 35.
    X. Fuku, N. Matinise, M. Masikini, K. Kasinathan and M. Maaza, Mater. Res. Bull., 97, 457 (2018).CrossRefGoogle Scholar
  36. 36.
    S. A. Khan, F. Noreen, S. Kanwal, A. Iqbal and G. Hussain, Mater. Sci. Eng., 82, 46 (2018).CrossRefGoogle Scholar
  37. 37.
    B. Sone, E. Manikandan, A. Gurib-Fakim and M. Maaza, Green Chem. Lett. Rev., 9, 85 (2016).CrossRefGoogle Scholar
  38. 38.
    C. J. Pandian, R. Palanivel and S. Dhananasekaran, Chinese J. Chem. Eng., 23, 1307 (2015).CrossRefGoogle Scholar
  39. 39.
    H. Chen, J. Wang, D. Huang, X. Chen, J. Zhu, D. Sun, J. Huang and Q. Li, Mater. Lett., 122, 166 (2014).CrossRefGoogle Scholar
  40. 40.
    B. Ajitha, Y. A. K. Reddy, H.-J. Jeon and C. W. Ahn, Adv. Powder Technol., 29, 86 (2018).CrossRefGoogle Scholar
  41. 41.
    T. Ataei-Germi and A. Nematollahzadeh, J. Colloid Interface Sci., 470, 172 (2016).CrossRefGoogle Scholar
  42. 42.
    P. K. Singh, K. Bhardwaj, P. Dubey and A. Prabhune, RSC Adv., 5, 24513 (2015).CrossRefGoogle Scholar
  43. 43.
    D. Dhamecha, S. Jalalpure and K. Jadhav, J. Photochem. Photobiol., 154, 108 (2016).CrossRefGoogle Scholar
  44. 44.
    M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri and R. Khosravi, Adv. Powder Technol., 28, 122 (2017).CrossRefGoogle Scholar
  45. 45.
    C. Balalakshmi, K. Gopinath, M. Govindarajan, R. Lokesh, A. Arumugam, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled and G. Benelli, J. Photochem. Photobiol, B, 173, 598 (2017).CrossRefGoogle Scholar
  46. 46.
    M. Kasithevar, M. Saravanan, P. Prakash, H. Kumar, M. Ovais, H. Barabadi and Z. K. Shinwari, J. Interdiscip. Nanomed., 2, 131 (2017).CrossRefGoogle Scholar
  47. 47.
    M. Shahid, Z. H. Farooqi, R. Begum, K. Naseem, M. Ajmal and A. Irfan, Korean J. Chem. Eng., 35, 1099 (2018).CrossRefGoogle Scholar
  48. 48.
    G. K. Deokar and A. G. Ingale, RSC Adv., 6, 74620 (2016).CrossRefGoogle Scholar
  49. 49.
    M. Nasrollahzadeh and S. M. Sajadi, J. Colloid Interface Sci., 462, 243 (2016).CrossRefGoogle Scholar
  50. 50.
    V. Ravichandran, S. Vasanthi, S. Shalini, S. A. A. Shah and R. Harish, Mater. Lett., 180, 264 (2016).CrossRefGoogle Scholar
  51. 51.
    S. Conea, L. Vlase and I. Chirila, Cellul. Chem. Technol., 50, 473 (2016).Google Scholar
  52. 52.
    J. Hohmann, Z. Pall, G. Günther and I. Mathe, Planta Medica, 63, 96 (1997).CrossRefGoogle Scholar
  53. 53.
    S. M. Mohsen and A. S. Ammar, Food Chem., 112, 595 (2009).CrossRefGoogle Scholar
  54. 54.
    T. J. I. Edison and M. Sethuraman, Process Biochem., 47, 1351 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Chemical Engineering DepartmentUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations