The effects of main anoxic section oxidation-reduction potential on the metabolism of PHA and TP in continuous-flow single-sludge treatment system

  • Xiaoling Wang
  • Hai LuEmail author
  • Tiehong Song
  • Ke Zhao


The experimental results and material balance analysis in this paper revealed the regularity of poly-hydroxy alkanoates (PHA) and total phosphorus (TP) metabolism in a continuous-flow single-sludge wastewater treatment system under different main anoxic section oxidation-reduction potential (ORPan) conditions. We also evaluated the effectiveness of the operation control parameters of ORPan as the continuous-flow single-sludge sewage treatment system from the aspect of the reaction mechanism. Using a programmable logic controller (PLC) automatic control system to take the circulating flow in nitrification as the controlled variable based on the feedback control structure, an experimental study was carried out under the condition of ORPan setting value of −143mV, −123mV, −105mV, −95mV, −72 mV and −57mV, respectively, with other operational design parameters remaining unchanged. Influent water quality of chemical oxygen demand/total nitrogen (COD/TN) was 5.0±0.6. The results showed that when ORPan was set at −95mV, the maximum values of PHA synthesis and storage rate, PHA degradation rate, phosphorus release rate and phosphorus absorption rate in anaerobic and pre-anoxic segments were 82.34, 7.90, 47.31, 14.27, 1.50 and 8.52mg/ (L·h), respectively. According to the metabolic mechanism of PHA and TP, ORPan was further proved to be the operation control parameter of the continuous-flow single-sludge sewage treatment system, and when the COD/TN value was 5.0±0.6, the optimal setting value was −95mV.


Continuous-flow Main Anoxic Section ORP PHA Phosphorus Material Balance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Sun, Z. Chen, G. X. Wu, Q. Y. Wu, F. Zhang, Z. B. Niu and H. Y. Hu, J. Cleaner Production, 131, 1 (2016).CrossRefGoogle Scholar
  2. 2.
    Y. Yang, Y. S. Ok, K. H. Kim, E. E. Kwon and Y. F. Tsang, Sci. Total Environ., 596-597, 303 (2017).CrossRefGoogle Scholar
  3. 3.
    J. Guerrero, A. Guisasola and J. A. Baeza, Water Res., 45, 4793 (2011).CrossRefGoogle Scholar
  4. 4.
    Y. X. Zhu, X. J. Tu, X. S. Chai, Q. Wei and L. N. Guo, Bioresour. Technol., 251, 7 (2018).CrossRefGoogle Scholar
  5. 5.
    W. Zeng, L. Li, Y. Y. Yang, X. D. Wang and Y. Z. Peng, Enzyme Microb. Technol., 48, 134 (2011).CrossRefGoogle Scholar
  6. 6.
    Q. Y. Yuan and J. Oieszkiewicz, Desalination and Water Treatment, 22, 72 (2010).CrossRefGoogle Scholar
  7. 7.
    A. G. Kapagiannidis, I. Zafiriadis and A. Aivasidis, New Biotechnol., 30, 227 (2013).CrossRefGoogle Scholar
  8. 8.
    H. M. Zou and Y. Wang, Bioresour. Technol., 221, 87 (2016).CrossRefGoogle Scholar
  9. 9.
    S. M. Souza, O. Q. F. Araújo and M. A. Z. Coelho, Bioresour. Technol., 99, 3213 (2008).CrossRefGoogle Scholar
  10. 10.
    E. Vaiopoulou and A. Aivasidis, Chemosphere, 72, 1062 (2008).CrossRefGoogle Scholar
  11. 11.
    J. M. Duan, W. Li, K. Zhao and J. Krampe, Desalination and Water Treatment, 40, 24 (2012).Google Scholar
  12. 12.
    L. Peng, X. H. Dai, Y. W. Liu, J. Sun, S. X. Song and B. J. Ni, Chemosphere, 197, 430 (2018).CrossRefGoogle Scholar
  13. 13.
    G. Bortone, S. Marsili Libelli, A. Tilche and J. Wanner, Water Sci. Technol., 40, 177 (1999).CrossRefGoogle Scholar
  14. 14.
    J. H. Wang, L. Wang, E. Y. Cui and H. Lu, Korean J. Chem. Eng., 35, 1274 (2018).CrossRefGoogle Scholar
  15. 15.
    Y. V. Nancharaiah, S. Venkata Mohan and P. N. L. Lens, Bioresour. Technol., 215, 173 (2016).CrossRefGoogle Scholar
  16. 16.
    M. A. Cardete, J. Mata-Álvarez, J. Dosta and R. Nieto-Sánchez, J. Environ. Chem. Eng., 5, 3472 (2017).CrossRefGoogle Scholar
  17. 17.
    X. L. Wang, J. Yin and S. Gao, Environ. Sci., 33, 175 (2012).Google Scholar
  18. 18.
    G. B. Zhu, Y. Z. Peng, S. Y. Wang, S. Y. Wu and B. Ma, Chem. Eng. J., 131, 319 (2007).CrossRefGoogle Scholar
  19. 19.
    A. Soares, P. Kampas, S. Maillard, E. Wood, J. Brigg, M. Tillotson, S. A. Parsons and E. Cartmell, J. Hazard. Mater., 175, 733 (2010).CrossRefGoogle Scholar
  20. 20.
    J. Bergendahl and L. Stevens, Environ. Progress, 24, 214 (2005).CrossRefGoogle Scholar
  21. 21.
    P. Pagacova, A. Blstakova and M. Drtil, Continually Measured ORP and pH Signal for Control of Nitrogen Removal, Springer Netherlands (2002).Google Scholar
  22. 22.
    M. V. Ruano, J. Ribes, A. Seco and J. Ferrer, Chem. Eng. J., 183, 212 (2012).CrossRefGoogle Scholar
  23. 23.
    Y. Ma, Y. Z. Peng and S. Y. Wang, China Environ. Sci., 25, 252 (2005).Google Scholar
  24. 24.
    H. T. Kim, G. S. Kim, S. W. Shin, S. H. Oh and K. H. Kim, KSCE J. Civil Eng., 9, 73 (2005).CrossRefGoogle Scholar
  25. 25.
    X. Liu, Q. W. Chen and L. Zhu, J. Environ. Sci., 47, 174 (2016).CrossRefGoogle Scholar
  26. 26.
    S. H. Chuang and C. F. Ouyang, Water Res., 34, 2283 (2000).CrossRefGoogle Scholar
  27. 27.
    I. G. München and I. K. Braunschweig, Design of Single Stage Activated Sludge Wastewater Treatment Plant, GFA Publishing Company, Hennef (2000).Google Scholar
  28. 28.
    Water Environment Federation, Design of Municipal Wastewater Treatment Plants, Volume 2: Liquid Treatment Processes, McGraw-Hill, Inc., New York (2010).Google Scholar
  29. 29.
    Shanghai Municipal Engineering Design Institute (Group) Co., LTD, Code for design of outdoor wastewater engineering, China Planning Press, Beijing (2016).Google Scholar
  30. 30.
    X. F. Wang, Method for Monitoring and Analyzing Water and Waste Water, China Environmental Science Press Pub, Beijing (2002).Google Scholar
  31. 31.
    A. C. Maizel and C. K. Remucal, Water Res., 122, 42 (2017).CrossRefGoogle Scholar
  32. 32.
    X. L. Wang, T. H. Song and X. D. Yu, Desalination and Water Treatment, 56, 1877 (2015).CrossRefGoogle Scholar
  33. 33.
    X. L. Wang, T. H. Song and Y. Yin, Environ. Sci., 36, 2617 (2015).Google Scholar
  34. 34.
    P. Caulet, B. Bujon, J. P. Philippe, F. Lefevre and J. M. Audic, Water Sci. Technol., 37, 41 (1998).CrossRefGoogle Scholar
  35. 35.
    T. Kuba and M. C. M. van Loosdrechtt, Water Sci. Technol., 27, 241 (1993).CrossRefGoogle Scholar
  36. 36.
    M. Henze, M. C. M. van Loosdrecht, G. A. Ekama and D. Brdjanovic, Biological Wastewater Treatment: Principles, Modelling and Design, IWA Publishing, London (2010).Google Scholar
  37. 37.
    N. Boontian, Eng. Technol., 64, 984 (2012).Google Scholar
  38. 38.
    D. S. Bi, X. P. Guo and D. H. Chen, Water Sci. Technol., 67, 1953 (2013).CrossRefGoogle Scholar
  39. 39.
    M. G. Kim and G. Nakhla, Water Environ. Res., 82, 69 (2010).CrossRefGoogle Scholar
  40. 40.
    R. Qi, T. Yu, Z. L. Li and D. Li, J. Environ. Sci., 24, 571 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchun City, Jilin ProvinceP. R. China
  2. 2.College of Civil Engineering and ArchitectureChangchun Sci-Tech UniversityChangchun City, Jilin ProvinceP. R. China

Personalised recommendations