Techno-economic optimization of the integration of an organic Rankine cycle into a molten carbonate fuel cell power plant

  • Kyungtae Park
  • Soung-Ryong Oh
  • Wangyun WonEmail author
Research papers


This study proposes a simple economic model to optimize the integration of an organic Rankine cycle into a molten carbonate fuel cell power plant. The optimization was conducted with five different types of working fluids, and an exergetic optimization was also done for comparison. In addition, sensitivity analysis was conducted to provide better insight into the behavior of the ORC system. The optimization results show that the optimum economic point and the optimum exergetic point are different, and a maximum profit can be achieved for the ORC system with economic optimization. Overall, in most cases, the profit is highest when the ORC system uses n-butane; however, R152a yields better profit when the ambient temperature is below 5 oC. In addition, all ORC systems show positive profit when the price of electricity is above 0.05 USD/kWh. For sensitivity analysis, two simulation experiments were conducted to observe the effect of changes in the feed gas temperature and the sales price of electricity on the optimization results. As a result, changes in the sale price of electricity are very critical, but changes in the feed gas temperature are not important.


Techno-economic Optimization Organic Rankine Cycle Molten Carbonate Fuel Cell Power Plant Particle Swarm Optimization Simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Sugiura and I. Naruse, J. Power Sources, 106, 51 (2002).CrossRefGoogle Scholar
  2. 2.
    R. Bove, A. Moreno and S. McPhail, International status of molten carbonate fuel cell (MCFC) technology, JRC Scientific and Technical Reports (2008).Google Scholar
  3. 3.
    S. J. McPhail, L. Leto, M. D. Pietra and V. Moreno, International status of molten carbonate fuel cells technology, ENEA (2015).Google Scholar
  4. 4.
    T. Yamamoto, T. Furuhata, N. Arai and K. Mori, Energy, 26, 239 (2001).CrossRefGoogle Scholar
  5. 5.
    N. B. Desai and S. Bandyopadhyay, Energy, 34, 1674 (2009).CrossRefGoogle Scholar
  6. 6.
    A. V. Akkaya and B. Sahin, Int. J. Energy Res., 33, 553 (2008).CrossRefGoogle Scholar
  7. 7.
    G. Angelino and P. C. di Paliano, Energy Conversion Engineering Conference and Exhibit, 2, 1400 (2000).Google Scholar
  8. 8.
    S.-W. Ji, S.-K. Park and T.-S. Kim, Transactions of the Korean Society of Mechanical Engineers B, 34, 907 (2010).CrossRefGoogle Scholar
  9. 9.
    A. H. Mamaghani, B. Najafi, A. Shirazi and F. Rinaldi, Energy, 82, 650 (2015).CrossRefGoogle Scholar
  10. 10.
    M. Ebrahimi and I. Moradpoor, Energy Convers. Manage., 116, 120 (2016).CrossRefGoogle Scholar
  11. 11.
    E. H. Wang, H. G. Zhang, B. Y. Fan, M. G. Ouyang, Y. Zhao and Q. H. Mu, Energy, 36, 3406 (2011).CrossRefGoogle Scholar
  12. 12.
    D. Sánchez, J. M. Muñoz de Escalona, B. Monje, R. Chacartegui and T. Sánchez, J. Power Sources, 196, 4355 (2011).CrossRefGoogle Scholar
  13. 13.
    A. Desideri, S. Gusev, M. van den Broek, V. Lemort and S. Quoilin, Energy, 97, 460 (2016).CrossRefGoogle Scholar
  14. 14.
    Z. Sun, S. Wang, F. Xu and W. He, Energy Procedia, 142, 1222 (2017).CrossRefGoogle Scholar
  15. 15.
    U. Lee and C. Han, Comput. Chem. Eng., 83, 21 (2015).CrossRefGoogle Scholar
  16. 16.
    W. Li, X. Feng, L. J. Yu and J. Xu, Appl. Therm. Eng., 31, 4014 (2011).CrossRefGoogle Scholar
  17. 17.
    J. Sarkar, Energy, 143, 141 (2018).CrossRefGoogle Scholar
  18. 18.
    E. Wang, H. Zhang, B. Fan and Y. Wu, J. Mech. Sci. Technol., 26, 2301 (2012).CrossRefGoogle Scholar
  19. 19.
    M. Wang, R. Khalilpour and A. Abbas, Energy Convers. Manage., 88, 947 (2014).CrossRefGoogle Scholar
  20. 20.
    S. Quoilin, M. Van Den Broek, S. Declaye, P. Dewallef and V. Lemort, Renew. Sustain. Energy Rev., 22, 168 (2013).CrossRefGoogle Scholar
  21. 21.
    B. Patel, N. B. Desai, S. S. Kachhwaha, V. Jain and N. Hadia, J. Clean. Prod., 154, 26 (2017).CrossRefGoogle Scholar
  22. 22.
    M. Asim, M. K. H. Leung, Z. Shan, Y. Li, D. Y. C. Leung and M. Ni, Energy Procedia, 143, 192 (2017).CrossRefGoogle Scholar
  23. 23.
    G. Xu and G. Yu, J. Comput. Appl. Math., 333, 65 (2018).CrossRefGoogle Scholar
  24. 24.
    Y. Chen, L. Li, J. Xiao, Y. Yang, J. Liang and T. Li, Eng. Appl. Artif. Intell., 70, 159 (2018).CrossRefGoogle Scholar
  25. 25.
    D. Tian and Z. Shi, Swarm Evol. Comput., 41, 49 (2018).CrossRefGoogle Scholar
  26. 26.
    Z. L. Gaing, IEEE Trans. Energy Convers., 19, 384 (2004).CrossRefGoogle Scholar
  27. 27.
    K. Park, W. Won and D. Shin, J. Nat. Gas. Sci. Eng., 34, 958 (2016).CrossRefGoogle Scholar
  28. 28.
    A. Godio and A. Santilano, J. Appl. Geophysics, 148, 163 (2018).CrossRefGoogle Scholar
  29. 29.
    FuelCell Energy Solutions, http://www. all-energy. co. uk/__novadocuments/ 80806?v=635633926036100000 (accessed April 13, 2018).Google Scholar
  30. 30.
    S. Aghahosseini and I. Dincer, Appl. Therm. Eng., 54, 35 (2013).CrossRefGoogle Scholar
  31. 31.
    N. Razaaly, G. Persico and P. M. Congedo, Energy Procedia, 129, 1149 (2017).CrossRefGoogle Scholar
  32. 32.
    S. Kwon, W. Won and J. Kim, Renewable Energy, 97, 177 (2016).CrossRefGoogle Scholar
  33. 33.
    S. Han, W. Won and J. Kim, Energy, 129, 86 (2017).CrossRefGoogle Scholar
  34. 34.
    W. Won, H. Kwon, J. Han and J. Kim, Renewable Energy, 103, 226 (2017).CrossRefGoogle Scholar
  35. 35.
    M. Kim, W. Won and J. Kim, Energy Convers. Manage., 143, 227 (2017).CrossRefGoogle Scholar
  36. 36.
    H. P. Loh, J. Lyons and C. W. White III, Process equipment cost estimation, DOE/NETL-2002/1169 (2002).Google Scholar
  37. 37.
    W. Won and C. T. Maravelias, Renewable Energy, 114, 357 (2017).CrossRefGoogle Scholar
  38. 38.
    A. I. Papadopoulos and P. Seferlis, Materials and process systems for CO2 capture: modeling, design, control, and integration, Wiley, New Jersey (2017).CrossRefGoogle Scholar
  39. 39.
    EIA-Electricity Data https://www. eia. gov/electricity/monthly/epm_ table_grapher. php?t=epmt_5_6_a (accessed March 3, 2018).Google Scholar
  40. 40.
    W10_TH_ Price Forecasts for Electric Motor CNG Compressor at Gas Station Project–EMERALD AACE 2017–WEEKLY BLOG https://emeraldaace2017. com/2017/11/11/w10_th_-price-forecastsfor-electric-motor-cng-compressor-at-gas-station-project/ (accessed March 2, 2018).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringSookmyung Women’s UniversitySeoulKorea
  2. 2.R&D CenterGas Technology Compression CompanyChangwon, GyeongnamKorea
  3. 3.Department of Chemical EngineeringChangwon National UniversityChangwon, GyeongnamKorea

Personalised recommendations