Korean Journal of Chemical Engineering

, Volume 36, Issue 2, pp 186–190 | Cite as

Phenolic compound extraction from spent coffee grounds for antioxidant recovery

  • Ho Seong Seo
  • Byung Heung ParkEmail author
Rapid Communication


As the popularity of coffee beverage increases, an upsurge in the amount of solid residue, known as spent coffee ground (SCG), is inevitable. Currently, SCG is disposed of in the form of solid waste. However, there is a considerable amount of some valuable compounds including phenolic compounds in SCG. In this work, SCG was adopted as a natural antioxidant source for recovering phenolic compounds by an extraction method. An aqueous ethanol solvent (30% v/v) was used at different conditions of temperature, extraction time, and liquid/solid ratio. The amounts of phenolic compounds were analyzed by the well-known Folin-Ciocalteu method, and values were expressed as the weight of gallic acid equivalent (GAE). The highest extraction yield (87.3%) was reported at the highs of process variables; temperature=60 °C, extraction time=150 min, and liquid/solid ratio= 50 mL/g, based on a full factorial experimental design. The statistical Student’s t-test applied to the three operating factors revealed that temperature and liquid/solid ratio are more significant than the extraction time. A correlation equation was proposed to quantitatively analyze the effect of the factors on the reduction yield which could be further used to design and optimize the extraction process.


Spent Coffee Ground Phenolic Recover Extraction Aqueous Ethanol Waste Reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ICO, International Coffee Organization, (accessed May 25 2018).Google Scholar
  2. 2.
    B. Bertrand, B. Guyot, P. Anthony and P. Lashermes, Theor. Appl. Genet., 107, 378 (2003).CrossRefGoogle Scholar
  3. 3.
    R. Clarke and O. G. Vitzhum, Coffee: Recent Developments, Blackwell Science Ltd., Oxford UK (2001).CrossRefGoogle Scholar
  4. 4.
    R. Cruz, M. M. Cardoso, L. Fernandes, M. Oliveira, E. Mendes, P. Baptista, S. Morais and S. Casal, J. Agric. Food Chem., 60, 7777 (2012).CrossRefGoogle Scholar
  5. 5.
    M. A. Silva, S. A. Nebra, M. J. Machado Silva and C. G. Sanchez, Biomass Bioenerg., 14, 457 (1998).CrossRefGoogle Scholar
  6. 6.
    F. Leifa, A. Pandey and C. R. Soccol, J. Basic Microbiol., 40, 187 (2000).CrossRefGoogle Scholar
  7. 7.
    S. F. Franca, L. S. Oliveira and M. E. Ferreira, Desalination, 249, 267 (2009).CrossRefGoogle Scholar
  8. 8.
    T. Tokimoto, N. Kawasaki, T. Nakamura, J. Akutagawa and S. Tanada, J. Colloid Interface Sci., 281, 56 (2005).CrossRefGoogle Scholar
  9. 9.
    H. D. Utomo and K. A. Hunter, Environ. Technol., 27, 25 (2006).CrossRefGoogle Scholar
  10. 10.
    F. Leifa, A. Pandey and C. R. Soccol, Braz. Arch. Biol. Technol., 44, 205 (2001).CrossRefGoogle Scholar
  11. 11.
    R. Cruz, P. Baptista, S. Cunha, J. A. Pereira and S. Casal, Molecules, 17, 1535 (2012).CrossRefGoogle Scholar
  12. 12.
    S. I. Mussatto, E. M. S. Machado, L. M. Carneiro and J. A. Teixeira, Appl. Energy, 92, 763 (2012).CrossRefGoogle Scholar
  13. 13.
    L. S. Oliveira, A. S. Franca, R. R. S. Camargos and V. P. Ferraz, Bioresour. Technol., 99, 3244 (2008).CrossRefGoogle Scholar
  14. 14.
    Z. Al-Hamamre, S. Foerster, F. Hartmann, M. Kröger and M. Kaltschmitt, Fuel, 96, 70 (2012).CrossRefGoogle Scholar
  15. 15.
    R. Campos-Vega, G. Loarca-Piña, H. Vergara-Castañeda and B. D. Oomach, Trends Food Sci. Technol., 45, 24 (2015).CrossRefGoogle Scholar
  16. 16.
    P. Esquivel and V. M. Jiménez, Food Res. Int., 46, 488 (2012).CrossRefGoogle Scholar
  17. 17.
    P. Hegde, P. Agrawal and P. K. Gupta, J. Environ. Res. Develop., 10, 547 (2016).Google Scholar
  18. 18.
    A.-N. Li, S. Li, Y.-J. Zhang, X.-R. Xu, Y.-M. Chen and H.-B. Li, Nutrients, 6, 6020 (2014).CrossRefGoogle Scholar
  19. 19.
    M. N. Clifford, Food Chem., 4, 63 (1979).CrossRefGoogle Scholar
  20. 20.
    C. Xiong, Y. Sun J. Du, W. Chen, Z. Si, He Gao, X. Tang and X. Zeng, Korean J. Chem. Eng., 35, 1312 (2018).Google Scholar
  21. 21.
    J. Vuksanoić, M. Lj. Kijevčanin and I. R. Radović, Korean J. Chem. Eng., 35, 1477 (2018).CrossRefGoogle Scholar
  22. 22.
    E. B. Mojzer, M. K. Hrnčič, M. Škerget, Ž. Knez and U. Bren, Molecules, 21, 901 (2016).CrossRefGoogle Scholar
  23. 23.
    S. I. Mussatto, L. F. Ballesteros, S. Martins and J. A. Teixeira, Sep. Purif. Technol., 83, 173 (2011).CrossRefGoogle Scholar
  24. 24.
    A. Zuorro and R. Lavecchia, J. Clean. Prod., 34, 49 (2012).CrossRefGoogle Scholar
  25. 25.
    M. D. Pavlović, A. V. Buntić, S. S. Šiler-Marinković and S. I. Dimitrijević-Branković, Sep. Purif. Technol., 118, 503 (2013).CrossRefGoogle Scholar
  26. 26.
    V. L. Singleton and J. A. Rossi, Am. J. Enol. Vitic., 16, 144 (1965).Google Scholar
  27. 27.
    G. A. Agbor, J. A. Vinson and P. E. Donnelly, Int. J. Food Sci. Nutr. Diet., 3, 147 (2014).CrossRefGoogle Scholar
  28. 28.
    K. Ramalakshmi, L. Jagan Mohan Rao, Y. Takano-Ishikawa and M. Goto, Food Chem., 115, 79 (2009).CrossRefGoogle Scholar
  29. 29.
    M. Anderson and P. Whitcomb, “DOE Simplified: Practical Tools for Effective Experimentation,” 3rd Ed., CRC Press (2015).CrossRefGoogle Scholar
  30. 30.
    R. Mee, “A Comprehensive Guide to Factorial Two-Level Experimentation”, Springer (2009).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.School of Chemical and Material EngineeringKorea National University of TransportationChungbukKorea

Personalised recommendations