Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 2, pp 203–209 | Cite as

Integrated production of polymer-grade lactide from aqueous lactic acid by combination of heterogeneous catalysis and solvent crystallization with ethanol

  • Pravin Pandharinath Upare
  • Jong-San Chang
  • In Taek Hwang
  • Dong Won HwangEmail author
Catalysis, Reaction Engineering
  • 26 Downloads

Abstract

Lactide, a six-membered dimeric cyclic ester of lactic acid, is a key building block of polylatic acid, a representative bio-based biodegradable polymer. As an alternative to the conventional lactide production process of a two-step polymerization and depolymerization from lactic acid, we developed a novel continuous and one-step synthesis of optically pure lactide from lactic acid under atmospheric conditions with SnO2-SiO2 nanocomposites as heterogeneous catalyst. In this catalytic process, lactide was obtained in vapor phase together with water vapor and the unreacted lactic acid. After optimization of crystallization process using ethanol solvent, lactide crystals with 99 wt% purity and a lactide yield of 78 wt% were obtained. Based on these results, an integrated process for high-yield polymer-grade lactide production from aqueous lactic acid could be constructed by combination of the heterogeneous catalysis and crystallization with ethanol, which is more environmentally friendly as compared to the conventional two-step prepolymer process.

Keywords

Lactic Acid Lactide Catalysis Crystallization Ethanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon and M. Poliakoff, Science, 337, 695 (2012).CrossRefGoogle Scholar
  2. 2.
    D. Saygin, D. J. Gielen, M. Draeck, E. Worrell and M. K. Patel, Renew. Sustain. Energy Rev., 40, 1153 (2014).CrossRefGoogle Scholar
  3. 3.
    A. Corma, S. Iborra and A. Velty, Chem. Rev., 107, 2411 (2007).CrossRefGoogle Scholar
  4. 4.
    S. Inkinen, M. Hakkarainen, A. C. Albertsson and A. Södergård, Biomacromol., 12, 523 (2011).CrossRefGoogle Scholar
  5. 5.
    S. Jacobsen, P. H. Degee, H. G. Fritz, P. H. Dubois and R. Jerome, Polym. Eng. Sci., 39, 1311 (1999).CrossRefGoogle Scholar
  6. 6.
    N. Saito, T. Okada, H. Horiuchi, N. Murakami, J. Takahashi, M. Nawata, H. Ota, K. Nozaki and K. Takaoka, Nature Biotechnol., 19, 332 (2001).CrossRefGoogle Scholar
  7. 7.
    P. R. Gruber, E. S. Hall, J. J. Kolstad, M. L. Iwen, R. D. Benson and R. L. Borchardt, US Patent 5,247,059 (1993).Google Scholar
  8. 8.
    J. Meerdink and N. D. A. Sädergard, US Patent 8,053, 584 B2 (2011).Google Scholar
  9. 9.
    D. K. Yoo and D. Kim, Macromol. Res., 13, 510 (2006).CrossRefGoogle Scholar
  10. 10.
    P. P. Upare, Y. K. Hwang, J.–S. Chang and D. W. Hwang, Ind. Eng. Chem. Res., 51, 4837 (2012).CrossRefGoogle Scholar
  11. 11.
    P. P. Upare, M. Lee, D. W. Hwang, Y. K. Hwang and J.–S. Chang, Catal. Comm., 56, 179 (2014).CrossRefGoogle Scholar
  12. 12.
    M. Dusselier, P. Van Wouwe, A. Dewaele, P. A. Jacobs and B. F. Sels, Science, 349, 78 (2015).CrossRefGoogle Scholar
  13. 13.
    P. Van Wouwe, M. Dusselier, E. Vanleeuw and B. Sels, ChemSus–Chem, 9, 907 (2016).CrossRefGoogle Scholar
  14. 14.
    P. P. Upare, J. W. Yoon, D. W. Hwang, U.–H. Lee, Y. K. Hwang, D.–Y. Hong, J. C. Kim, J. H. Lee, S. K. Kwak, H. Shin, H. Kim and J.–S. Chang, Green Chem., 18, 5978 (2016).CrossRefGoogle Scholar
  15. 15.
    Y. Yamaguchi and T. Arimura, US Patent 5,502,215 (1996).Google Scholar
  16. 16.
    T. Tsukegi, T. Motoyama, Y. Shirai, H. Nishida and T. Endo, Polymer Degrad. Stabil., 92, 552 (2007).CrossRefGoogle Scholar
  17. 17.
    G. F. L. Koay, T.–G. Chuah, S. Zainal–Abidin, S. Ahmad and T. S. Y. Choong, Ind. Crops & Products, 34, 1135 (2011).CrossRefGoogle Scholar
  18. 18.
    T.–C. Chen and Y.–H. Ju, Ind. Eng. Chem. Res., 40, 3781 (2001).CrossRefGoogle Scholar
  19. 19.
    W. L. Xu, Y. B. Huang, J. H. Qian, O. Sha, and Y. Q. Wang, Sep. Purif. Technol., 41, 173 (2005).CrossRefGoogle Scholar
  20. 20.
    H. Ohara, H. Okuyama, M. Ogaito, Y. Fujii, T. Kawamoto, T. Kawabe and Y. Horibe, US Patent 6,313,319 B1 (2001).Google Scholar
  21. 21.
    L. Xiaoning, W. Rongqing, L. Ying and W. Jun, C. N. Patent 101,157,680 (2006).Google Scholar
  22. 22.
    Z. Chen, C. Xie, Z. Xu, Y. Wang, H. Zhao and H. Hao, J. Chem. Eng. Data, 58, 143 (2013).CrossRefGoogle Scholar
  23. 23.
    K. Alfonsi, J. Colberg, P. J. Dunn, T. Fevig, S. Jennings, T. A. Johnson, H. P. Kleine, C. Knight, M. A. Nagy, D. A. Perry and M. Stefaniak, Green Chem., 10, 31 (2008).CrossRefGoogle Scholar
  24. 24.
    C. D. C. Erbetta, R. J. Alves, J. M. Resende, R. F. S. Freitas and R. G. Sousa, J. Biomaterials Nanobiotechnol., 3, 208 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Pravin Pandharinath Upare
    • 1
  • Jong-San Chang
    • 1
    • 3
  • In Taek Hwang
    • 1
    • 2
  • Dong Won Hwang
    • 1
    • 2
    Email author
  1. 1.Green Carbon Catalysis Research GroupKorea Research Institute of Chemical Technology (KRICT)DaejeonKorea
  2. 2.Department of Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)DaejeonKorea
  3. 3.Department of ChemistrySungkyunkwan UniversitySuwonKorea

Personalised recommendations