Advertisement

Quantification of recalcitrant organic compounds during their removal test by a novel and economical method based on chemical oxygen demand analysis

  • Abraham Efraim Rodríguez-Mata
  • Leonel Ernesto Amabilis-SosaEmail author
  • Adriana Roé-Sosa
  • José Manuel Barrera-Andrade
  • Jesús Gabriel Rangel-Peraza
  • María G. Salinas-Juárez
Research Papers
  • 5 Downloads

Abstract

This article proposes the use of mathematical models obtained by the Pearson correlation between the concentration of various recalcitrant organic compounds (ROCs) measured by chromatographic analysis (ChrA) and experimental chemical oxygen demand (COD). The aim is to reduce the number of samples processed by the ChrA, diminishing the economic costs of analysis. Ten ROCs, including pesticides, colorants, aromatic hydrocarbons and pharmaceuticals compounds, were introduced into four advanced oxidation processes operated at different residence times. Every ROC was tested at each residence time by COD determination and by quantification of concentrations with ChrA. Furthermore, chemical equations for the COD reaction of every ROC were formulated. A linear model was obtained for all the ROCs, after corroborating that the correlation between theoretical and experimental COD was >0.99, which established the ROC concentration from the experimental COD, omitting the ChrA. Results indicated that it is possible to know concentrations in most of the ROCs by means of the experimental COD with a >99±0.01% of accuracy, which leads to a cost decrease and even to evaluate methods in developing countries, which often do not have chromatographs and where pollution issues are meaningful.

Keywords

Chemical Oxygen Demand Advanced Oxidation Processes Linear Correlation Recalcitrant Organic Compound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Zhang and M. Mastalerz, Chem. Soc. Rev., 43(6), 1934 (2014).Google Scholar
  2. 2.
    F. P. Carvalho, Food Energy Secur., 6(2), 48 (2017).Google Scholar
  3. 3.
    H. Jin, S. Liu, W. Wei, D. Zhang, Z. Cheng and L. Guo, Energy Fuels, 29(10), 6342 (2015).Google Scholar
  4. 4.
  5. 5.
    L. C. Sander, M. M. Schantz and S. A. Wise, in Liquid Chromatography Applications, Ed. by S. Fanali, C. F. Poole, P. R. Haddad and M. L. Riekkola, Elsiever Inc., New York (2017).Google Scholar
  6. 6.
    L. A. Schaider, K. M. Rodgers and R. A. Rudel, Environ. Sci. Technol., 51(13), 7304 (2017).Google Scholar
  7. 7.
    J. M. Barrera-Andrade, J. A. García-M, A. E. Jiménez-G, R. Zanella-S, L. S. Gelover-S and M. C. Duran-Dominguez-de-Bazua, J. Adv. Oxid. Technol., 17(1), 152 (2014).Google Scholar
  8. 8.
    J. E. Hardoy, D. Mitlin and D. Satterthwaite, Environmental problems in an urbanizing world: finding solutions in cities in Africa, Asia and Latin America, 2nd Ed., Routledge, Abingdon-on-Thames, 464 (2013).Google Scholar
  9. 9.
    J. M. Dean, International Trade and the Environment, 1st Ed., Taylor and Francis, London, 60 (2017).Google Scholar
  10. 10.
    J. Li, G. Luo, L. J. He, J. Xu and J. Lyu, Crit. Rev. Anal. Chem., 48(1), 47 (2018).Google Scholar
  11. 11.
    R. B. Geerdink, R. S. van den Hurk and O. J. Epema, Anal. Chim. Acta., 961, 1 (2017).Google Scholar
  12. 12.
    A. A. Bletsou, J. Jeon, J. Hollender, E. Archontaki and N. S. Thomaidis, TrAC, Trends Anal. Chem., 66, 32 (2015).Google Scholar
  13. 13.
    J. L. Liu and M. H. Won, Environ. Int., 59, 208 (2013).Google Scholar
  14. 14.
    W. L. Liew, M. A. Kassim, K. Muda, S. K. Loh and A. C. Affam, J. Environ., 149, 222 (2015).Google Scholar
  15. 15.
    R. Meffe and I. de Bustamante, Sci. Total Environ., 481, 280 (2014).Google Scholar
  16. 16.
    A. Klančar, J. Trontelj, A. Kristl, A. Meglič, T. Rozina, M. Z. Justin and R. Roškar, Ecol. Eng., 97, 186 (2016).Google Scholar
  17. 17.
    F. Ahmadi, Y. Assadi, S. M. Hosseini and M. Rezaee, J. Chromatogr. A., 1101, 1 (2006).Google Scholar
  18. 18.
    H. P. Li, G. C. Li and J. F. Jen, J. Chromatogr. A., 1012, 2 (2003).Google Scholar
  19. 19.
    J. N. Bianchin, G. Nardini, J. Merib, A. N. Dias, E. Martendal and E. Carasek, J. Chromatogr. A., 1233, 22 (2012).Google Scholar
  20. 20.
    P. Poinot, F. Qin, M. Lemoine, V. Yvon, J. Ledauphin and J. L. Gaillard, J. Food Compos. Anal., 35(2), 83 (2014).Google Scholar
  21. 21.
    M. Kucharska and J. Grabka, Talanta, 80(3), 1045 (2010).Google Scholar
  22. 22.
    J. L. Santos, I. Aparicio, E. Alonso and M. Callejón, Anal. Chim. Acta, 550(1–2), 116 (2005).Google Scholar
  23. 23.
    E. W. Rice, R. B. Baird, A. D. Eaton and L. S. Clesceri, Standard Methods for the Examination of Water and Wastewater, 22th Ed., American Public Health Association, Water Environment Federation, Denver, 1496 (2012).Google Scholar
  24. 24.
    S. Manahan, Environmental Chemistry, 10th Ed., CRC press, Boca Raton, FL, 752 (2017).Google Scholar
  25. 25.
    M. Behloul, H. Grib, N. Drouiche, N. Abdi, H. Lounici and N. Mameri, Sep. Sci. Technol., 48(4), 664 (2013).Google Scholar
  26. 26.
    D. M. Fouad and M. B. Mohamed, J. Nanomater., 2012(2), 1 (2012).Google Scholar
  27. 27.
    P. V. Laxma Reddy and K. H. Kim, J. Hazard. Mater., 285, 325 (2015).Google Scholar
  28. 28.
    O. Autin, J. Hart, P. Jarvis, J. MacAdam, S. A. Parsons and B. Jefferson, Water Resour., 47(6), 2041 (2013).Google Scholar
  29. 29.
    N. S. Shah, X. He, H. M. Khan, J. A. Khan, K. E. O’Shea, D. L. Boccelli and D. D. Dionysiou, J. Hazard. Mater., 263, 584 (2013).Google Scholar
  30. 30.
    M. A. Oturan and J. J. Aaron, Crit. Rev. Environ. Sci. Technol., 44(23), 2577 (2014).Google Scholar
  31. 31.
    X. T. Bui, T. P. T. Vo, H. H. Ngo, W. S. Guo and T. T. Nguyen, Sci. Total Environ., 563, 1050 (2014).Google Scholar
  32. 32.
    D. Yang, S. Qi, J. Zhang, C. Wu and X. Xing, Ecotoxicol. Environ. Saf., 89, 59 (2013).Google Scholar
  33. 33.
    W. A. Al-Amrani, P. E. Lim, C. E. Seng and W. W. Wan Ngah, J. Taiwan Inst. Chem. Eng., 45, 609 (2014).Google Scholar
  34. 34.
    L. Feng, van E. D. Hullebusch, M. A. Rodrigo, G. Esposito and M. A. Oturan, Chem. Eng. J., 228, 944 (2013).Google Scholar
  35. 35.
    D. P. Mohapatra, S. K. Brar, R. D. Tyagi, P. Picard and R. Y. Surampalli, Sci. Total Environ., 470, 58 (2014).Google Scholar
  36. 36.
    X. Liu, P. Lv, G. Yao, C. Ma, Y. Tang, Y. Wu and Y. Yan, Colloids Surf., A, 441, 420 (2014).Google Scholar
  37. 37.
    L. P. Ramteke and P. R. Gogate, Process Saf. Environ. Prot., 95, 146 (2015).Google Scholar
  38. 38.
    Z. W. Cheng, L. Feng, J. M. Chen, J. M. Yu and Y. F. Jiang, J. Hazard. Mater., 254, 354 (2013).Google Scholar
  39. 39.
    Y. Zhang, C. S. Guo, J. Xu, Y. Z. Tian, G. L. Shi and Y. C. Feng, Water Res., 46(9), 3065 (2012).Google Scholar
  40. 40.
    P. Singh, K. Mondal and A. Sharma, J. Colloid Interface Sci., 394, 208 (2013).Google Scholar
  41. 41.
    A. Buthiyappan, A. R. A. Aziz and W. M. A. W Daud, Rev. Chem. Eng., 32(1), 1 (2014).Google Scholar
  42. 42.
    F. H. Borba, A. N. Modenes, F. R. Espinoza-Quinones, D. R. Manenti, R. Bergamasco and N. D. Mora, Environ. Technol., 34, 653 (2013).Google Scholar
  43. 43.
    F. I. Hai, K. Yamamoto and K. Fukushi, Crit. Rev. Environ. Sci. Technol., 374(4), 315 (2007).Google Scholar
  44. 44.
    F. M. Amaral, M. T. Kato, L. Florêncio and S. Gavazza, Bioresour. Technol., 163, 364 (2014).Google Scholar
  45. 45.
    M. Bahrami and A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process., 30, 275 (2015).Google Scholar
  46. 46.
    A. Nezamzadeh-Ejhieh and F. Khodabakhshi-Chermahini, J. Ind. Eng. Chem., 20, 695 (2014).Google Scholar
  47. 47.
    U. Hübner, B. Seiwert, T. Reemtsma and M. Jekel, Water Res., 49, 34 (2014).Google Scholar
  48. 48.
    N. H. M. Azmi Ayodele, O. B. Vadivelu, V. M. Asif and B. H. Hameed, J. Taiwan Inst. Chem. Eng., 45, 1459 (2014).Google Scholar
  49. 49.
    J. Blanco, F. Torrades, M. Morrón, M. Brouta-Agnésa and J. García-Montaño, Chem. Eng. J., 240, 469 (2014).Google Scholar
  50. 50.
    D. Montgomery and C. Jennings, Introduction to Statistical Quality Control, 7th Ed., John Wiley & Sons Inc., London, 754 (2012).Google Scholar
  51. 51.
    B. W. Berry, M. C. Martínez-Rivera and C. Tommos, Proc. Natl Acad. Scie., 109(25), 9739 (2012).Google Scholar
  52. 52.
    T. Yang, L. Zhang, A. Wang and H. Gao, Inf. Sci., 235, 55 (2013).Google Scholar
  53. 53.
    M. Kwon, S. Kim, Y. Yoon, Y. Jung, T. M. Hwang, J. Lee and J. W. Kang, Chem. Eng. J., 269, 379 (2015).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Abraham Efraim Rodríguez-Mata
    • 1
  • Leonel Ernesto Amabilis-Sosa
    • 1
    Email author
  • Adriana Roé-Sosa
    • 2
  • José Manuel Barrera-Andrade
    • 3
  • Jesús Gabriel Rangel-Peraza
    • 4
  • María G. Salinas-Juárez
    • 5
  1. 1.CONACyT - Instituto Tecnológico de CuliacánCuliacán, SinaloaMexico
  2. 2.Universidad Tecnológica de CuliacánCuliacán, SinaloaMéxico
  3. 3.Escuela Superior de Ingeniería Química e Industrias ExtractivasInstituto Politécnico NacionalMexico CityMexico
  4. 4.División de Estudios de Posgrado e InvestigaciónTecnológico Nacional de México-Instituto Tecnológico de CuliacánSinaloaMéxico
  5. 5.Departamento de Ingeniería Química, Facultad de Estudios Superiores ZaragozaUNAMMéxicoMéxico

Personalised recommendations