Advertisement

Photo-crosslinked polymer networks based on graphene-functionalized soybean oil and their properties

  • Hui Wang
  • Arvind Gupta
  • Beom Soo KimEmail author
Article
  • 20 Downloads

Abstract

The increasing importance of products which are sustainable and eco-friendly drives the scientific community to develop materials derived from bio-based and agricultural feedstock. With the same motivation, we have developed acrylated epoxidized soybean oil (AESO)-based composite with functionalized graphene or graphene oxide using UV curing technique. Graphene and graphene oxide were chemically functionalized with 3-methacryloxypropyltrimethoxysilane and 4,4'-diphenylmethanediisocyanate/hydroxyl ethyl acrylate, respectively, and used as filler in the AESO matrix. Infra-red and X-ray photoelectron spectroscopy confirmed the functionalization of graphene and graphene oxide along with formation of polymer network in composite. Functionalization of graphene and graphene oxide was found to be effective in enhancing homogeneous dispersion into the polymer matrix, which ultimately improved mechanical properties of base polymer (~48% increase in tensile strength with 0.02% addition of functionalized graphene). On the other hand, AESO composite with graphene and graphene oxide without functionalization exhibited lower tensile strengths. The functionalization of graphene and graphene oxide and incorporation of the same in the polymer network using UV curing technique provides a realistic and effective methodology to obtain high performance composite for several applications.

Keywords

Acrylated Epoxidized Soybean Oil Functionalized Graphene Nanocomposites UV Curing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Sawant, B. K. Salunke, T. K. Tran and B. S. Kim, Korean J. Chem. Eng., 33, 1505 (2016).CrossRefGoogle Scholar
  2. 2.
    P. Saithai, V. Tanrattanakul, W. Chinpa, K. Kaewtathip and E. Dubreucq, Mater. Sci. Forum, 695, 320 (2011).CrossRefGoogle Scholar
  3. 3.
    T. Varaporn and S. Pimchanok, J. Appl. Polym. Sci., 114, 3057 (2009).CrossRefGoogle Scholar
  4. 4.
    H.M. Kim, H.R. Kim and B. S. Kim, J. Polym. Environ., 18, 291 (2010).CrossRefGoogle Scholar
  5. 5.
    N.R. Jang, H.R. Kim, C.T. Hou and B. S. Kim, Polym. Adv. Technol., 24, 814 (2013).CrossRefGoogle Scholar
  6. 6.
    R. Auvergne, S. Caillol, G. David, B. Boutevin and J.-P. Pascault, Chem. Rev., 114, 1082 (2014).CrossRefGoogle Scholar
  7. 7.
    I. Tarnavchyk, A. Popadyuk, N. Popadyuk and A. Voronov, ACS Sust. Chem. Eng., 3, 1618 (2015).CrossRefGoogle Scholar
  8. 8.
    M. A. Mosiewicki and M. I. Aranguren, Eur. Polym. J., 49, 1243 (2013).CrossRefGoogle Scholar
  9. 9.
    M. L. Robertson, K. Chang, W. M. Gramlich and M. A. Hillmyer, Macromolecules, 43, 1807 (2010).CrossRefGoogle Scholar
  10. 10.
    D. Åkesson, M. Skrifvars and P. Walkenström, J. Appl. Polym. Sci., 114, 2502 (2009).CrossRefGoogle Scholar
  11. 11.
    W. Thielemans, E. Can, S. S. Morye and R. P. Wool, J. Appl. Polym. Sci., 83, 323 (2002).CrossRefGoogle Scholar
  12. 12.
    B. Dong, Y. Yuan, J, Luo, L, Dong, R. Liu and X. Liu, Prog. Org. Coat., 118, 57 (2018).CrossRefGoogle Scholar
  13. 13.
    Q. Zhang, J. Wang, J. Yu and Z.-X. Guo, Soft Matter, 13, 3431 (2017).CrossRefGoogle Scholar
  14. 14.
    W. Thielemans, I. M. McAninch, V. Barron, W. J. Blau and R. P. Wool, J. Appl. Polym. Sci., 98, 1325 (2005).CrossRefGoogle Scholar
  15. 15.
    W. Liu, M. Fei, Y. Ban, A. Jia and R. Qiu, Polymers, 9, 541 (2017).CrossRefGoogle Scholar
  16. 16.
    C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008).CrossRefGoogle Scholar
  17. 17.
    F. Abbasi, J. Karimi-Sabet, C. Ghotbi and Z. Abbasi, Korean J. Chem. Eng., 35, 1174 (2018).CrossRefGoogle Scholar
  18. 18.
    G. Lee and B. S. Kim, Biotechnol. Prog., 30, 463 (2014).CrossRefGoogle Scholar
  19. 19.
    C. Dongyu, Y. Kamal and S. Mo, Nanotechnology, 20, 085712 (2009).CrossRefGoogle Scholar
  20. 20.
    J.R. Potts, S. H. Lee, T. M. Alam, J. An, M.D. Stoller, R.D. Piner and R. S. Ruoff, Carbon, 49, 2615 (2011).CrossRefGoogle Scholar
  21. 21.
    H. Ha and C. J. Ellison, Korean J. Chem. Eng., 35, 303 (2018).CrossRefGoogle Scholar
  22. 22.
    G. Gonçalves, P. A. A. P. Marques, A. Barros-Timmons, I. Bdkin, M. K. Singh, N. Emami and J. Grácio, J. Mater. Chem., 20, 9927 (2010).CrossRefGoogle Scholar
  23. 23.
    C. Rodríguez-González, A. L. Martínez-Hernández, V. M. Castaño, O.V. Kharissova, R. S. Ruoff and C. Velasco-Santos, Ind. Eng. Chem. Res., 51, 3619 (2012).CrossRefGoogle Scholar
  24. 24.
    X. Wang, Y. Hu, L. Song, H. Yang, W. Xing and H. Lu, J. Mater. Chem., 21, 4222 (2011).CrossRefGoogle Scholar
  25. 25.
    A. Liang, X. Jiang, X. Hong, Y. Jiang, Z. Shao and D. Zhu, Coatings, 8, 33 (2018).CrossRefGoogle Scholar
  26. 26.
    D.W. Johnson, B. P. Dobson and K. S. Coleman, Curr. Opin. Colloid Interf. Sci., 20, 367 (2015).CrossRefGoogle Scholar
  27. 27.
    Y. J. Noh, H.-I. Joh, J. Yu, S. H. Hwang, S. Lee, C. H. Lee, S.Y. Kim and J.R. Youn, Sci. Rep., 5, 9141 (2015).CrossRefGoogle Scholar
  28. 28.
    Y. Fu, L. Liu and J. Zhang, ACS Appl. Mater. Inter., 6, 14069 (2014).CrossRefGoogle Scholar
  29. 29.
    J. Cho, I. Jeon, S.Y. Kim, S. Lim and J.Y. Jho, ACS Appl. Mater. Inter., 9, 27984 (2017).CrossRefGoogle Scholar
  30. 30.
    L. Dong, Z. Chen, X. Zhao, J. Ma, S. Lin, M. Li, Y. Bao, L. Chu, K. Leng, H. Lu and K. P. Loh, Nat. Commn., 9, 76 (2018).CrossRefGoogle Scholar
  31. 31.
    M. J. Allen, V.C. Tung and R.B. Kaner, Chem. Rev., 110, 132 (2010).CrossRefGoogle Scholar
  32. 32.
    M. Fang, K. Wang, H. Lu, Y. Yang and S. Nutt, J. Mater. Chem., 19, 7098 (2009).CrossRefGoogle Scholar
  33. 33.
    M. C. Hsiao, S.H. Liao, Y. F. Lin, C. A. Wang, N.W. Pu, H. M. Tsai and C. C. Ma, Nanoscale, 3, 1516 (2011).CrossRefGoogle Scholar
  34. 34.
    S. Jianfeng, H. Yizhe, L. Chen, Q. Chen and Y. Mingxin, Small, 5, 82 (2009).CrossRefGoogle Scholar
  35. 35.
    H. Kim, Y. Miura and C.W. Macosko, Chem. Mater., 22, 3441 (2010).CrossRefGoogle Scholar
  36. 36.
    Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang and Y. Chen, Adv. Mater., 21, 1275 (2009).CrossRefGoogle Scholar
  37. 37.
    L.M. Veca, F. Lu, M. J. Meziani, L. Cao, P. Zhang, G. Qi, L. Qu, M. Shrestha and Y.-P. Sun, Chem. Commun., 18, 2565 (2009).CrossRefGoogle Scholar
  38. 38.
    Z. Liu, J.T. Robinson, X. Sun and H. Dai, J. Am. Chem. Soc., 130, 10876 (2008).CrossRefGoogle Scholar
  39. 39.
    X. Wang, W. Xing, L. Song, B. Yu, Y. Hu and G. H. Yeoh, React. Funct. Polym., 73, 854 (2013).CrossRefGoogle Scholar
  40. 40.
    B. Yu, X. Wang, W. Xing, H. Yang, L. Song and Y. Hu, Ind. Eng. Chem. Res., 51, 14629 (2012).CrossRefGoogle Scholar
  41. 41.
    J. Wen, B.K. Salunke and B. S. Kim, J. Chem. Technol. Biot., 92, 1428 (2017).CrossRefGoogle Scholar
  42. 42.
    B.K. Salunke and B.S. Kim, RSC Adv., 6, 17158 (2016).CrossRefGoogle Scholar
  43. 43.
    X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai, Nat. Nanotechnol., 3, 538 (2008).CrossRefGoogle Scholar
  44. 44.
    S.C. Mauck, S. Wang, W. Ding, B. J. Rohde, C.K. Fortune, G. Yang, S.-K. Ahn and M. L. Robertson, Macromolecules, 49, 1605 (2016).CrossRefGoogle Scholar
  45. 45.
    M.-C. Hsiao, S.-H. Liao, M.-Y. Yen, P.-I. Liu, N.-W. Pu, C.-A. Wang and C.-C.M. Ma, ACS Appl. Mater. Inter., 2, 3092 (2010).CrossRefGoogle Scholar
  46. 46.
    X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang and F. Zhang, Adv. Mater., 20, 4490 (2008).CrossRefGoogle Scholar
  47. 47.
    M. Martin-Gallego, R. Verdejo, M. A. Lopez-Manchado and M. Sangermano, Polymer, 52, 4664 (2011).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringChungbuk National UniversityCheongju, ChungbukKorea

Personalised recommendations