Korean Journal of Chemical Engineering

, Volume 36, Issue 2, pp 312–320 | Cite as

Mesoporous carbon nanofiber engineered for improved supercapacitor performance

  • Subrata Ghosh
  • Wan Dao Yong
  • En Mei JinEmail author
  • Shyamal Rao Polaki
  • Sang Mun JeongEmail author
  • Hangbae Jun
Materials (Organic, Inorganic, Electronic, Thin Films)


Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the performance of carbon nanofiber-based electrode is still the subject of intense research. We investigated the supercapacitor performance of porosity-induced carbon nanofibers (CNFs). The fabrication process involves electrospinning, calcination, and subsequent etching. The porous CNF not only delivers a higher capacitance of 248 F/g at a current density of 1 A/g, but also exhibits a higher rate performance of 73.54%, lower charge transfer resistance and only 1.1% capacitance loss after 2000 charge-discharge cycles, compared to pristine CNF. The excellent electrochemical behavior of porous CNF is correlated with the degree of graphitization, a higher volume of mesopores, and enhanced surface area. The as-fabricated symmetric device comprising porous CNF exhibits an energy density of 9.9 Wh/kg, the power density of 0.69 kW/kg and capacitance retention of 89% after 5000 charge-discharge cycles. The introduction of porosity in CNFs is a promising strategy to achieve high-performance supercapacitor electrode.


Supercapacitor Porous Carbon Nanofiber Electrospinning Specific Capacitance Tandem Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Lin, E. Goikolea, A. Balducci, K. Naoi, P. L. Taberna, M. Salanne, G. Yushin and P. Simon, Mater. Today, 21, 419 (2018).CrossRefGoogle Scholar
  2. 2.
    B. E. Conway, Electrochemical supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers (1999).CrossRefGoogle Scholar
  3. 3.
    A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse and D. Aurbach, J. Mater. Chem. A, 5, 12653 (2017).CrossRefGoogle Scholar
  4. 4.
    L. Xia, L. Yu, D. Hu and G.Z. Chen, Mater. Chem. Front., 1, 584 (2017).CrossRefGoogle Scholar
  5. 5.
    M. Inagaki, H. Konno and O. Tanaike, J. Power Sources, 195, 7880 (2010).CrossRefGoogle Scholar
  6. 6.
    S. Ghosh, S. M. Jeong and S.R. Polaki, Korean J. Chem. Eng., 35, 1389 (2018).CrossRefGoogle Scholar
  7. 7.
    E. M. Jin, J. G. Lim and S. M. Jeong, J. Ind. Eng. Chem., 54, 421 (2017).CrossRefGoogle Scholar
  8. 8.
    G. Sahoo, S.R. Polaki, S. Ghosh, N.G. Krishna and M. Kamruddin, J. Power Sources, 401, 37 (2018).CrossRefGoogle Scholar
  9. 9.
    S. Ghosh, S.R. Polaki, P. Ajikumar, N.G. Krishna and M. Kamruddin, Indian J. Phys., 92, 337 (2018).CrossRefGoogle Scholar
  10. 10.
    C. Schütter, C. Ramirez-Castro, M. Oljaca, S. Passerini, M. Winter and A. Balducci, J. Electrochem. Soc., 162, A44 (2015).CrossRefGoogle Scholar
  11. 11.
    N.R. Chodankar, S.-H. Ji and D.-H. Kim, J. Electrochem. Soc., 165, A2446 (2018).CrossRefGoogle Scholar
  12. 12.
    S. Ghosh, G. Sahoo, S.R. Polaki, N. G. Krishna, M. Kamruddin and T. Mathews, J. Appl. Phys., 122, 214902 (2017).CrossRefGoogle Scholar
  13. 13.
    X. Mao, T.A. Hatton and G.C. Rutledge, Curr. Org. Chem., 17, 1390 (2013).CrossRefGoogle Scholar
  14. 14.
    A. Choudhury, B. Dey, S.S. Mahapatra, D.-W. Kim, K.-S. Yang and D. J. Yang, Nanotechnology, 29, 165401 (2018).CrossRefGoogle Scholar
  15. 15.
    N. Islam, M.N. Ferdous Hoque, Y. Zu, S. Wang and Z. Fan, MRS Adv., 3, 855 (2018).CrossRefGoogle Scholar
  16. 16.
    C. Kim, K.-S. Yang and W.-J. Lee, Electrochem. Solid-State Lett., 7, A397 (2004).CrossRefGoogle Scholar
  17. 17.
    E. Samuel, B. Joshi, H. S. Jo, Y. I. Kim, S. An, M.T. Swihart, J. M. Yun, K. H. Kim and S. S. Yoon, Chem. Eng. J., 328, 776 (2017).CrossRefGoogle Scholar
  18. 18.
    C. H. Kim and B.-H. Kim, J. Power Sources, 274, 512 (2015).CrossRefGoogle Scholar
  19. 19.
    M. Cakici, R.R. Kakarla and F. Alonso-Marroquin, Chem. Eng. J., 309, 151 (2017).CrossRefGoogle Scholar
  20. 20.
    W.-J. Lee, S. Jeong, H. Lee, B.-J. Kim, K.-H. An, Y.-K. Park and S.-C. Jung, Korean J. Chem. Eng., 34, 2993 (2017).CrossRefGoogle Scholar
  21. 21.
    I. Michio, Y. Ying and K. Feiyu, Adv. Mater., 24, 2547 (2012).CrossRefGoogle Scholar
  22. 22.
    C. Kim and K. Yang, Appl. Phys. Lett., 83, 1216 (2003).CrossRefGoogle Scholar
  23. 23.
    D.-D. Zhou, W.-Y. Li, X.-L. Dong, Y.-G. Wang, C.-X. Wang and Y.-Y. Xia, J. Mater. Chem. A, 1, 8488 (2013).CrossRefGoogle Scholar
  24. 24.
    S.-J. Park and S.-H. Im, Bull. Korean Chem. Soc., 29, 777 (2008).CrossRefGoogle Scholar
  25. 25.
    Y. Liu, J. Zhou, L. Chen, P. Zhang, W. Fu, H. Zhao, Y. Ma, X. Pan, Z. Zhang, W. Han and E. Xie, ACS Appl. Mater. Interfaces, 7, 23515 (2015).CrossRefGoogle Scholar
  26. 26.
    J. Wang, J. Tang, Y. Xu, B. Ding, Z. Chang, Y. Wang, X. Hao, H. Dou, J. H. Kim, X. Zhang and Y. Yamauchi, Nano Energy, 28, 232 (2016).CrossRefGoogle Scholar
  27. 27.
    M. Kim, Y. Kim, K.M. Lee, S.Y. Jeong, E. Lee, S.H. Baeck and S. E. Shim, Carbon, 99, 607 (2016).CrossRefGoogle Scholar
  28. 28.
    J. H. Jeong and B.-H. Kim, J. Taiwan Inst. Chem. Eng., 84, 179 (2018).CrossRefGoogle Scholar
  29. 29.
    Y.-S. Kim, K. Kumar, F.T. Fisher and E.-H. Yang, Nanotechnology, 23, 015301 (2012).CrossRefGoogle Scholar
  30. 30.
    L. Fan, L. Yang, X. Ni, J. Han, R. Guo and C. Zhang, Carbon, 107, 629 (2016).CrossRefGoogle Scholar
  31. 31.
    S. Ghosh, T. Mathews, B. Gupta, A. Das, N.G. Krishna and M. Kamruddin, Nano-Struct. Nano-Objects, 10, 42 (2017).CrossRefGoogle Scholar
  32. 32.
    E. Ismar, T. Karazehir, M. Ates and A. S. Sarac, J. Appl. Polym. Sci., 135, 45723 (2018).CrossRefGoogle Scholar
  33. 33.
    M.D. Stoller and R. S. Ruoff, Energy Environ. Sci., 3, 1294 (2010).CrossRefGoogle Scholar
  34. 34.
    R. Ding, H. Wu, M. Thunga, N. Bowler and M.R. Kessler, Carbon, 100, 126 (2016).CrossRefGoogle Scholar
  35. 35.
    S. Ghosh, K. Ganesan, S. Polaki, T. Mathews, S. Dhara, M. Kamruddin and A. Tyagi, Appl. Surf. Sci., 349, 576 (2015).CrossRefGoogle Scholar
  36. 36.
    G. Sahoo, S.R. Polaki, S. Ghosh, N. G. Krishna, M. Kamruddin and K. Ostrikov, Energy Storage Mater., 14, 297 (2018).CrossRefGoogle Scholar
  37. 37.
    S. Ghosh, S.R. Polaki, M. Kamruddin, S. M. Jeong and K.K. Ostrikov, J. Phys. D: Appl. Phys., 51, 145303 (2018).CrossRefGoogle Scholar
  38. 38.
    B.-H. Kim and K. S. Yang, J. Ind. Eng. Chem., 20, 3474 (2014).CrossRefGoogle Scholar
  39. 39.
    W.K. Chee, H. N. Lim, Z. Zainal, I. Harrison, Y. Andou, N. M. Huang, M. Altarawneh and Z.T. Jiang, Mater. Lett., 199, 200 (2017).CrossRefGoogle Scholar
  40. 40.
    Y. Cheng, L. Huang, X. Xiao, B. Yao, L. Yuan, T. Li, Z. Hu, B. Wang, J. Wan and J. Zhou, Nano Energy, 15, 66 (2015).CrossRefGoogle Scholar
  41. 41.
    Q. Dong, G. Wang, H. Hu, J. Yang, B. Qian, Z. Ling and J. Qiu, J. Power Sources, 243, 350 (2013).CrossRefGoogle Scholar
  42. 42.
    S. Hong, S. Lee and U. Paik, Electrochim. Acta, 141, 39 (2014).CrossRefGoogle Scholar
  43. 43.
    A. Eftekhari, J. Mater. Chem. A, 6, 2866 (2018).CrossRefGoogle Scholar
  44. 44.
    J. Cai, H. Niu, H. Wang, H. Shao, J. Fang, J. He, H. Xiong, C. Ma and T. Lin, J. Power Sources, 324, 302 (2016).CrossRefGoogle Scholar
  45. 45.
    K.V. Sankar and R.K. Selvan, RSC Adv., 4, 17555 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringChungbuk National UniversityChungbukKorea
  2. 2.Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic ResearchHomi Bhabha National InstituteKalpakkamIndia
  3. 3.Department of Environmental EngineeringChungbuk National UniversityChungbukKorea

Personalised recommendations