Advertisement

Reactive insights into the hydrogen production from ammonia borane facilitated by phosphonium based ionic liquid

  • Debashis Kundu
  • Sankar Chakma
  • Gopal Pugazhenthi
  • Tamal BanerjeeEmail author
Article
  • 17 Downloads

Abstract

The current work presents a mechanistic insight of hydrogen production from ammonia borane (AB) facilitated by the phosphonium based ionic liquid (IL), trihexyl(tetradecyl)phosphonium bis (2,4,4-trimethylpentyl) phosphinate ([TDTHP][Phosph]). Prior to experiments, the IL was screened from a pool of 11 phosphonium ILs with the infinite dilution activity coefficients (IDAC) values as predicted by conductor like screening model segment activity coefficient (COSMO-SAC) theory. Thereafter, a dehydrogenation experiment of AB/[TDTHP][Phosph] was carried out at 105 °C and 4×10-2 mbar of gauge pressure, which yielded 2.07 equivalent hydrogen production. At higher temperature, the 11B NMR characterization shows the suppression of induction period at 105 °C and appearance of borohydride anion after 1 min of dehydrogenation. Further, time-resolved characterization of AB/[TDTHP][Phosph] at 105 °C confirmed the appearance of polymeric aminoborane after 10min with a subsequent formation of polyborazylene. HR-MS characterization coupled with 1H resonance spectrum confirmed structural integrity of IL. The dual characterization of NMR and HR-MS led us to propose a dehydrogenation mechanism of AB/[TDTHP][Phosph] system.

Keywords

Ammonia Borane Phosphonium Ionic Liquid Boron NMR COSMO-SAC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Richardson, S. de Gala, R. H. Crabtree and P. E. M. Siegbahn, J. Am. Chem. Soc., 117, 12875 (1995).Google Scholar
  2. 2.
    J. Li, F. Zhao and F. Jing, J. Chem. Phys., 116, 25 (2002).Google Scholar
  3. 3.
    A. Al-Kukhun, H. T. Hwang and A. Varma, Ind. Eng. Chem. Res., 50, 8824 (2011).Google Scholar
  4. 4.
    G. Cinti, D. Frattini, E. Jannelli, U. Desideri and G. Bidini, Appl. Energy, 192, 466 (2017).Google Scholar
  5. 5.
    F. H. Stephens, V. Pons and R. T. Baker, Dalton Trans., 2613 (2007).Google Scholar
  6. 6.
    A. Rossin and M. Peruzzini, Chem. Rev., 116, 8848 (2016).Google Scholar
  7. 7.
    A. Gutowska, L. Li, Y. Shin, C. M. Wang, X. S. Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, M. Gutowski and T. Autrey, Angew. Chem., Int. Ed., 44, 3578 (2005).Google Scholar
  8. 8.
    H.-L. Jiang and Q. Xu, Catal. Today, 170, 56 (2011).Google Scholar
  9. 9.
    D. W. Himmelberger, L. R. Alden, M. E. Bluhm and L. G. Sneddon, Inorg. Chem., 48, 9883 (2009).Google Scholar
  10. 10.
    M. A. P. Martins, C. P. Frizzo, D. N. Moreira, N. Zanatta and H. G. Bonacorso, Chem. Rev., 108, 2015 (2008).Google Scholar
  11. 11.
    T. Welton, Chem. Rev., 99, 2071 (1999).Google Scholar
  12. 12.
    R. M. Vrikkis, K. J. Fraser, K. Fujita, D. R. MacFarlane and G. D. Elliott, J. Biomech. Eng., 131, 074514 (2009).Google Scholar
  13. 13.
    C. V. Manohar, D. Rabari, A. A. P. Kumar, T. Banerjee and K. Mohanty, Fluid Phase Equilib., 360, 392 (2013).Google Scholar
  14. 14.
    M. E. Bluhm, M. G. Bradley, R. Butterick, U. Kusari and L. G. Sneddon, J. Am. Chem. Soc., 128, 7748 (2006).Google Scholar
  15. 15.
    T. Nakagawa, A. K. Burrell, R. E. Del Sesto, M. T. Janicke, A. L. Nekimken, G. M. Purdy, B. Paik, R.-Q. Zhong, T. A. Semelsberger and B. L. Davis, RSC Adv., 4, 21681 (2014).Google Scholar
  16. 16.
    R. K. Ahluwalia, J. K. Peng, and T. Q. Hua, Int. J. Hydrogen Energy, 36, 15689 (2011).Google Scholar
  17. 17.
    S. Mahato, B. Banerjee, G. Pugazhenthi and T. Banerjee, Int. J. Hydrogen Energy, 40, 10390 (2015).Google Scholar
  18. 18.
    M. J. Valero-Pedraza, A. Martín-Cortés, A. Navarrete, M. D. Bermejo and Á. Martín, Energy, 91, 742 (2015).Google Scholar
  19. 19.
    S. Gatto, O. Palumbo, F. Trequattrini and A. Paolone, J. Therm. Anal. Calorim., 129, 663 (2017).Google Scholar
  20. 20.
    N. Sahiner and D. Alpaslan, J. Appl. Polym. Sci., 131, 40183 (2014).Google Scholar
  21. 21.
    W. R. H. Wright, E. R. Berkeley, L. R. Alden, R. T. Baker and L. G. Sneddon, Chem. Commun., 47, 3177 (2011).Google Scholar
  22. 22.
    S. S. Mal, F. H. Stephens and R. T. Baker, Chem. Commun., 47, 2922 (2011).Google Scholar
  23. 23.
    B. D. Rekken, A. E. Carre-Burritt, B. L. Scott and B. L. Davis, J. Mater. Chem. A, 2, 16507 (2014).Google Scholar
  24. 24.
    R. K. Blundell and P. Licence, Phys. Chem. Chem. Phys., 16, 15278 (2014).Google Scholar
  25. 25.
    F. Atefi, M. T. Garcia, R. D. Singer and P. J. Scammells, Green Chem., 11, 1595 (2009).Google Scholar
  26. 26.
    R. E. Del Sesto, C. Corley, A. Robertson and J. S. Wilkes, J. Organomet. Chem., 690, 2536 (2005).Google Scholar
  27. 27.
    E. Frackowiak, G. Lota and J. Pernak, J., Appl. Phys. Lett., 86, 164104 (2005).Google Scholar
  28. 28.
    K. Tsunashima, and M. Sugiya, Electrochem. Commun., 9, 2353 (2007).Google Scholar
  29. 29.
    C. J. Bradaric, A. Downard, C. Kennedy, A. J. Robertson and Y. Zhou, Green Chem., 5, 143 (2003).Google Scholar
  30. 30.
    C. Zhang, B. Xin, Z. Xi, B. Zhang, Z. Li, H. Zhang, Z. Li and J. Hao, ACS Sustainable Chem. Eng., 6, 1468 (2018).Google Scholar
  31. 31.
    Y. Shia and B. Zhang, Chem. Soc. Rev., 45, 1529 (2016).Google Scholar
  32. 32.
    J. F. Callejas, C. G. Read, C. W. Roske, N. S. Lewis and R. E. Schaak, Chem. Mater., 28, 6017 (2016).Google Scholar
  33. 33.
    R. Dennington, T. Keith and J. Millam, GaussView (Version 5), Semichem Inc., Shawnee Mission, KS (2009).Google Scholar
  34. 34.
    M. J. Frisch, et al., Gaussian 09 (Revision D.01), Gaussian, Inc., Wallingford, CT (2013).Google Scholar
  35. 35.
    A. D. Becke, J. Chem. Phys., 98, 5648 (1993).Google Scholar
  36. 36.
    C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785 (1988).Google Scholar
  37. 37.
    J. P. Perdew, Phys. Rev. B: Condens. Matter Mater. Phys., 33, 8822 (1986).Google Scholar
  38. 38.
    C. Sosa, J. Andzelm, B. C. Elkin, E. Wimmer, K. D. Dobbs and D. A. Dixon, J. Phys. Chem., 96, 6630 (1992).Google Scholar
  39. 39.
    A. Schäfer, H. Horn and R. Ahlrichs, Chem. Phys., 97, 2571 (1992).Google Scholar
  40. 40.
    A. Bharti, D. Kundu, D Rabari and T. Banerjee, Phase equilibria in ionic liquid facilitated liquid-liquid extractions, CRC Press, New York (2017).Google Scholar
  41. 41.
    D. Kundu, B. Banerjee, G. Pugazhenthi and T. Banerjee, Int. J. Hydrogen Energy, 42, 2756 (2017).Google Scholar
  42. 42.
    D. Kundu, S. Chakma, G. Pugazhenthi and T. Banerjee, ACS Omega, 3, 2273 (2018).Google Scholar
  43. 43.
    A. C. Stowe, W. J. Shaw, J. C. Linehan, B. Schmid and T. Autrey, Phys. Chem. Chem. Phys., 9, 1831 (2007).Google Scholar
  44. 44.
    N. C. Smythe and J. C. Gordon, Eur. J. Inorg. Chem., 2010, 509 (2010).Google Scholar
  45. 45.
    S. Sahler, S. Sturm, M. T. Kessler and M. H. G. Prechtl, Chem. Eur. J., 20, 8934 (2014).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Debashis Kundu
    • 1
  • Sankar Chakma
    • 2
  • Gopal Pugazhenthi
    • 1
  • Tamal Banerjee
    • 1
    Email author
  1. 1.Department of Chemical EngineeringIndian Institute of Technology Guwahati, Guwahati -AssamIndia
  2. 2.Department of Chemical EngineeringIndian Institute of Science Education and Research Bhopal, Bhopal -Madhya PradeshIndia

Personalised recommendations