Effect of substrate off-orientation on the characteristics of GaInP/AlGaInP single heterojunction solar cells
- 12 Downloads
Abstract
The effects of GaAs substrate off-orientation on GaInP/AlGaInP heterojunction solar cells were investigated. The performances of solar cells fabricated on 2° and 10° off GaAs substrates were compared. The short circuit current densities were 10.44 mA/cm2 for the 10° off sample, 7.15 mA/cm2 and 7.41 mA/cm2 for the 2° off samples, which showed 30% higher short-circuit current density for 10° off samples. Also, 30% higher external quantum efficiencies and smooth surface morphology were observed in the solar cell fabricated on the 10° off GaAs substrate. Secondary ion mass spectrometry depth profiles showed that the solar cells on 2° off substrates had a 20-times higher oxygen concentration than the solar cells on 10° off GaAs substrate in the n-GaAs/GaAs buffer layer. The 30% reduction for the solar cells on 2° substrates in short circuit current density (Jsc) was attributed to the higher oxygen concentration of the 2° off samples than the 10° off samples. I-V characteristics comparison between different front contact grid patterns was also performed for optimization of grid contacts. A 0.47 V bandgap-voltage offset, one of the device performance figures of merit to compare PV cells with different materials, was obtained.
Keywords
Heterojunction Solar Cell Substrate Off-orientation Impurity Incorporation GaInP/AlGaInPPreview
Unable to display preview. Download preview PDF.
References
- 1.M. Suzuki, Y. Nishikawa, M. Ishikawa and Y. Kokubun, J. Cryst. Growth, 113, 127 (1991).CrossRefGoogle Scholar
- 2.M. Kondo, C. Anayama, N. Okada, H. Sekiguchi, K. Domen and T. Tanahashi, J. Appl. Phys., 76, 914 (1994).CrossRefGoogle Scholar
- 3.D. C. Radulescu, G.W. Wicks, W. J. Schaff, A.R. Calawa and L. F. Eastman, J. Appl. Phys., 63, 5115 (1988).CrossRefGoogle Scholar
- 4.T. Suzuki, A. Gomyo and S. Iijima, J. Cryst. Growth, 99, 60 (1990).CrossRefGoogle Scholar
- 5.R. M. France, J. F. Geisz, I. Garcia, M.A. Steiner, W. E. McMahon, D. J. Friedman, T. E. Moriarty, C. Osterwald, J. Scott Ward, A. Duda, M. Young and W. J. Olavarria, IEEE J. Photovoltaics, 5, 432 (2015).CrossRefGoogle Scholar
- 6.C.T. Sah, R.N. Noyce and W. Shockley, Proceedings of the IRE, 45, 1228 (1957).CrossRefGoogle Scholar
- 7.K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama and S. Okamoto, IEEE J. Photovoltaics, 4, 1433 (2014).CrossRefGoogle Scholar
- 8.B. Zhang, D. H. Lee, H. Chae, C. Park and S. M. Cho, Korean J. Chem Eng., 27, 999 (2010).CrossRefGoogle Scholar
- 9.H. Kim, S. Nam, J. Jeong, S. Lee, J. Seo, H. Han and Y. Kim, Korean J. Chem Eng., 31, 1095 (2014).CrossRefGoogle Scholar
- 10.H. H. Cho, C. H. Cho, H. Kang, H. Yu, J. H. Oh and B. J. Kim, Korean J. Chem Eng., 32, 261 (2014).CrossRefGoogle Scholar
- 11.I. H. Yoo, S. S. Kalanur, K. Eom, B. Ahn, I. S. Cho, H. K. Yu, H. Jeon and H. Seo, Korean J. Chem Eng., 34, 3200 (2017).CrossRefGoogle Scholar
- 12.V. H.T. Pham, N.T. N. Truong, T. K. Trinh, S. H. Lee and C. Park, Korean J. Chem Eng., 33, 678 (2016).CrossRefGoogle Scholar
- 13.D. L. Feucht, J. Vac. Sci. Technol., 14, 57 (1977).CrossRefGoogle Scholar
- 14.J.F. Geisz, M.A. Steiner, I. García, S.R. Kurtz and D. J. Friedman, Appl. Phys. Lett., 103, 041118 (2013).CrossRefGoogle Scholar
- 15.T. Masuda, S. Tomasulo, J.R. Lang and M. L. Lee, J. Appl. Phys., 117, 094504 (2015).CrossRefGoogle Scholar
- 16.M. Moser, C. Geng, E. Lach, I. Queisser, F. Scholz, H. Schweizer and A. Dörnen, J. Cryst. Growth, 124, 333 (1992).CrossRefGoogle Scholar
- 17.N. Chand, A. S. Jordan and S.N.G. Chu, Appl. Phys. Lett., 59, 3270 (1991).CrossRefGoogle Scholar
- 18.M. Kondo, N. Okada, K. Domen, K. Sugiura, C. Anayama and T. Tanahashi, J. Electron. Mater., 23, 355 (1994).CrossRefGoogle Scholar
- 19.N. Xiang, A. Tukiainen and M. Pessa, J. Electron. Mater., 13, 549 (2002).CrossRefGoogle Scholar
- 20.H.W. Yu, E.Y. Chang, H.Q. Nguyen, J.T. Chang, C. C. Chung, C. I. Kuo, Y. Y. Wong and W. C. Wang, Appl. Phys. Lett., 97, 2008 (2010).Google Scholar
- 21.M. Hata, H. Takata, T. Yako, N. Fukuhara, T. Maeda and Y. Uemura, J. Cryst. Growth, 124, 427 (1992).CrossRefGoogle Scholar
- 22.B.A. Philips, A.G. Norman, T.Y. Seong, S. Mahajan, G.R. Booker, M. Skowronski, J.P. Harbison and V.G. Keramidas, J. Cryst. Growth, 140, 249 (1994).CrossRefGoogle Scholar
- 23.A. Gomyo, T. Suzuki and S. Iijima, Phys. Rev. Lett., 60, 2645 (1988).CrossRefGoogle Scholar
- 24.M. Zafar, J.-Y. Yun and D.-H. Kim, Korean J. Chem Eng., 34, 1504 (2017).CrossRefGoogle Scholar