Korean Journal of Chemical Engineering

, Volume 36, Issue 2, pp 197–202 | Cite as

Metal- and halide-free solid-type multifunctional alkanolamines as catalysts for cycloaddition of CO2

  • Hyeon-Gook KimEmail author
  • Hye Jeong Son
  • Choong-Sun Lim
Catalysis, Reaction Engineering


Although the production of cyclic carbonates from CO2 and epoxides can be promoted by eco-friendly halogen- and metal-free organic catalysts, its homogeneity complicates the catalyst reuse. Herein, we synthesized solid multifunctional alkanolamines using simple epoxy and amine reactions, and analyzed their structures by IR and 13C-NMR. Then, we employed these as catalysts for CO2 cycloaddition with propylene oxide, obtaining propylene carbonate in 98% yield after 3 h at 120 °C. Moreover, at 60 °C, the reaction was successfully repeated five times and a product yield of 50% was maintained throughout.


Alkanolamine Carbon Dioxide Fixation Metal- and Halide-free Solid Catalyst Propylene Carbonate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_194_MOESM1_ESM.pdf (266 kb)
Metal- and halide-free solid-type multifunctional alkanolamines as catalysts for cycloaddition of CO2


  1. 1.
    T. R. Anderson, E. Hawkins and P. D. Jones, Endeavour, 40, 178 (2016).CrossRefGoogle Scholar
  2. 2.
    E. Alper and O. Y. Orhan, Petroleum, 3, 109 (2017).CrossRefGoogle Scholar
  3. 3.
    M. North, R. Pasquale and C. Young, Green Chem., 12, 1514 (2010).CrossRefGoogle Scholar
  4. 4.
    M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann and F. E. Kühn, Angew. Chem., Int. Ed., 50, 8510 (2011).CrossRefGoogle Scholar
  5. 5.
    M. North and R. Pasquale, Angew. Chem., Int. Ed., 48, 2946 (2009).CrossRefGoogle Scholar
  6. 6.
    W. L. Dai, S. L. Luo, S. F. Yin and C. T. Au, Appl. Catal., A., 366, 2 (2009).CrossRefGoogle Scholar
  7. 7.
    M. Cokoja, M. E. Wilhelm, M. H. Anthofer, W. A. Herrmann and F. E. Kühn, ChemSusChem, 8, 2436 (2015).CrossRefGoogle Scholar
  8. 8.
    C. Martín, G. Fiorani and A. W. Kleij, ACS Catal., 5, 1353 (2015).CrossRefGoogle Scholar
  9. 9.
    A. A. G. Shaikh and S. Sivaram, Chem. Rev., 96, 951 (1996).CrossRefGoogle Scholar
  10. 10.
    T. Sakakura and K. Kohno, Chem. Commun., 1312 (2009).Google Scholar
  11. 11.
    S. Y. Huang, S. G. Liu, J. P. Li, N. Zhao, W. Wei and Y. H. Sun, Fuel Chem. Technol., 35, 701 (2007).CrossRefGoogle Scholar
  12. 12.
    B. M. Bhanage, S.-i. Fujita, Y. Ikushima and M. Arai, Appl. Catal. A, 219, 259 (2001).CrossRefGoogle Scholar
  13. 13.
    D. Bai, S. Duan, L. Hai and H. Jing, ChemCatChem, 4, 1752 (2012).CrossRefGoogle Scholar
  14. 14.
    J. Zhang, X. Cheng, B. Zhang, J. Shi, L. Zheng, J. Zhang, D. Shao, X. Tan, B. Han and G. Yang, ChemCatChem, 10, 1 (2018).CrossRefGoogle Scholar
  15. 15.
    J. Song, Z. Zhang, B. Han, S. Hu, W. Li and Y. Xie, Green Chem., 10, 1337 (2008).CrossRefGoogle Scholar
  16. 16.
    L. N. He, H. Yasuda and T. Sakakura, Green Chem., 5, 92 (2003).CrossRefGoogle Scholar
  17. 17.
    A. Decortes, A. M. Castilla and A. W. Kleij, Angew. Chem., Int. Ed., 49, 9822 (2010).CrossRefGoogle Scholar
  18. 18.
    Y. Zhang and J. Y. G. Chan, Energy Environ. Sci., 3, 408 (2010).CrossRefGoogle Scholar
  19. 19.
    M. O. Vieira, W. F. Monteiro, B. S. Neto, R. Ligabue, V. V. Chaban and S. Einloft, Catal. Lett., 148, 108 (2018).CrossRefGoogle Scholar
  20. 20.
    P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis, 2nd Ed., Wiley-VCH (2008).Google Scholar
  21. 21.
    H.-G. Kim, C. S. Lim, D. W. Kim, D.-H. Cho, D. K. Lee and J. S. Chung, Mol. Catal., 438, 121 (2017).CrossRefGoogle Scholar
  22. 22.
    J. Chen, M. Zhong, L. Tao, L. Liu, S. Jayakumar, C. Li, H. Li and Q. Yang, Green Chem., 20, 903 (2018).CrossRefGoogle Scholar
  23. 23.
    S. Wu, C. Teng, S. Cai, B. Jiang, Y. Wang, H. Meng and H. Tao, Nanoscale Res. Lett., 12, 1 (2017).CrossRefGoogle Scholar
  24. 24.
    L. X. Wu, H. P. Yang, Y. B. Guan, M.-P. Yang, H. Wang and J. X. Lu, Int. J. Electrochem. Sci., 12, 8963 (2017).CrossRefGoogle Scholar
  25. 25.
    D.-H. Lan, Y.-X. Gong, N.-Y. Tan, S.-S. Wu, J. Shen, K.-C. Yao, B. Yi, C.-T. Au and S.-F. Yin, Carbon, 127, 245 (2018).CrossRefGoogle Scholar
  26. 26.
    D.-H. Lan, H.-T. Wang, L. Chen, C.-T. Au and S.-F. Yin, Carbon, 100, 81 (2016).CrossRefGoogle Scholar
  27. 27.
    D.-H. Lan, L. Chen, C.-T. Au and S.-F. Yin, Carbon, 93, 22 (2015).CrossRefGoogle Scholar
  28. 28.
    D.-H. Lan, F.-M. Yang, S.-L. Luo, C.-T. Au and S.-F. Yin, Carbon, 73, 351 (2014).CrossRefGoogle Scholar
  29. 29.
    Z. Z. Yang, Y. N. Zhao and L. N. He, RSC Adv., 1, 545 (2011).CrossRefGoogle Scholar
  30. 30.
    J. Sun, W. Cheng, W. Fan, Y. Wang, Z. Meng and S. Zhang, Catal. Today, 148, 361 (2009).CrossRefGoogle Scholar
  31. 31.
    A. H. Jadhav, G. M. Thorat, K. Lee, A. C. Lim, H. Kang and J. G. Seo, Catal. Today, 265, 56 (2016).CrossRefGoogle Scholar
  32. 32.
    R. F. Sammelson and M. J. Kurth, Chem. Rev., 101, 137 (2001).CrossRefGoogle Scholar
  33. 33.
    A. Chen, Y. Zhang, J. Chen, L. Chen and Y. Yu, J. Mater. Chem. A, 3, 9807 (2015).CrossRefGoogle Scholar
  34. 34.
    X.-L. Meng, Y. Nie, J. Sun, W.-G. Cheng, J.-Q. Wang, H.-Y. He and S.-J. Zhang, Green Chem., 16, 2771 (2014).CrossRefGoogle Scholar
  35. 35.
    S. N. Talapaneni, O. Buyukcakir, S. H. Je, S. Srinivasan, Y. Seo, K. Polychronopoulou and A. Coskun, Chem. Mater., 27, 6818 (2015).CrossRefGoogle Scholar
  36. 36.
    J. Roeser, K. Kailasam and A. Thomas, ChemSusChem, 5, 1793 (2012).CrossRefGoogle Scholar
  37. 37.
    R. Skelton, F. Dubois and R. Zenobi, Anal. Chem., 72, 1707 (2000).CrossRefGoogle Scholar
  38. 38.
    N. A. Rangel-Vazquez, C. Sánchez-López and F. R. Felix, Polímeros, 24, 453 (2014).CrossRefGoogle Scholar
  39. 39.
    N. J. Mathers and Zhihong Xu, Geoderma, 114, 19 (2003).CrossRefGoogle Scholar
  40. 40.
    B. Ochiai and T. Endo, Prog. Polym. Sci., 30, 183 (2005).CrossRefGoogle Scholar
  41. 41.
    D. A. Tomalia, D. R. Swanson, B. Huang, S. Svenson, L. A. Reyna, Michael A, C. R. DeMattei and J. R. Heinzelmann, US Patent, 0298006A1 (2007).Google Scholar
  42. 42.
    K. R. Roshan, B. M. Kim, A. C. Kathalikkattil, J. Tharun, Y. S. Won and D. W. Park, Chem. Commun., 50, 13664 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Hyeon-Gook Kim
    • 1
    Email author
  • Hye Jeong Son
    • 1
  • Choong-Sun Lim
    • 1
  1. 1.Advanced Industrial Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical TechnologyUlsanKorea

Personalised recommendations