Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 2, pp 173–185 | Cite as

Nanostructured colloidal quantum dots for efficient electroluminescence devices

  • Wan Ki Bae
  • Jaehoon LimEmail author
Invited Review Paper

Abstract

The exceptional quality of light generated from colloidal quantum dots has attracted continued interest from the display and lighting industry, leading to the development of commercial quantum dot displays based on the photoluminescence down-conversion process. Beyond this technical level, quantum dots are being introduced as emissive materials in electroluminescence devices (or quantum dot-based light-emitting diodes), which boast high internal quantum efficiency of up to 100%, energy efficiency, thinness, and flexibility. In this review, we revisit various milestone studies regarding the core/shell heterostructures of colloidal quantum dots from the viewpoint of electroluminescence materials. Development of nanostructured colloidal quantum dots advanced from core/shell heterostructure, core/thick shell formulation, and delicate control of confinement potential shape has demonstrated close correlation of the photophysical properties of quantum dots with the performance of electroluminescence device, which provided useful guidelines on the heterostructured quantum dots for mitigating or eliminating efficiency limiting phenomena in quantum dot light emitting diodes. To enable practical and high performance quantum dot-based electroluminescence devices in the future, integration of design concepts on the heterostructures with environmentally benign systems will be crucial.

Keywords

Colloidal Quantum Dots Nanocrystals Core/Shell Heterostructures Electroluminescence Light Emitting Diodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Lim, W.K. Bae, J. Kwak, S. Lee, C. Lee and K. Char, Opt. Mater. Express, 2, 594 (2012).Google Scholar
  2. 2.
    J. M. Pietryga, Y.-S. Park, J. Lim, A. F. Fidler, W. K. Bae, S. Brovelli and V. I. Klimov, Chem. Rev., 116, 10513 (2016).Google Scholar
  3. 3.
    J. Chen, V. Hardev, J. Hartlove, J. Hofler and E. Lee, SID Int. Symp. Dig. Tec., 43, 895 (2012).Google Scholar
  4. 4.
    M.A. Hines and P. Guyot-Sionnest, J. Phys. Chem., 100, 468 (1996).Google Scholar
  5. 5.
    B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, J. Phys. Chem. B, 101, 9463 (1997).Google Scholar
  6. 6.
    X. Peng, M. C. Schlamp, A.V. Kadavanich and A. P. Alivisatos, J. Am. Chem. Soc., 119, 7019 (1997).Google Scholar
  7. 7.
    D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase and H. Weller, Nano Lett., 1, 207 (2001).Google Scholar
  8. 8.
    D.V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson and H. Weller, J. Phys. Chem. B, 108, 18826 (2004).Google Scholar
  9. 9.
    P.O. Anikeeva, C. F. Madigan, J. E. Halpert, M. G. Bawendi and V. Bulovic, Phys. Rev. B, 78, 085434 (2008).Google Scholar
  10. 10.
    W.K. Bae, Y.-S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J.M. Pietryga and V. I. Klimov, Nat. Commun., 4, 2661 (2013).Google Scholar
  11. 11.
    D. Bozyigit, O. Yarema and V. Wood, Adv. Funct. Mater., 23, 3024 (2013).Google Scholar
  12. 12.
    Y. Shirasaki, G. J. Supran, W.A. Tisdale and V. Bulovic, Phys. Rev. Lett., 110, 217403 (2013).Google Scholar
  13. 13.
    B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan and P.T. Kazlas, Nat. Photonics, 7, 407 (2013).Google Scholar
  14. 14.
    X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang and X. Peng, Nature, 515, 96 (2014).Google Scholar
  15. 15.
    K.P. Acharya, A. Titov, J. Hyvonen, C. Wang, J. Tokarz and P.H. Holloway, Nanoscale, 9, 14451 (2017).Google Scholar
  16. 16.
    L. Wang, J. Lin, Y. Hu, X. Guo, Y. Lv, Z. Tang, J. Zhao, Y. Fan, N. Zhang, Y. Wang and X. Liu, ACS Appl. Mater. Interfaces, 9, 38755 (2017).Google Scholar
  17. 17.
    Y. Fu, W. Jiang, D. Kim, W. Lee and H. Chae, ACS Appl. Mater. Interfaces, 10, 17295 (2018).Google Scholar
  18. 18.
    M.K. Choi, J. Yang, T. Hyeon and D.-H. Kim, npj Flexible Electronics, 2, 10 (2018).Google Scholar
  19. 19.
    C.-Y. Han and H. Yang, J. Korean Ceram. Soc., 54, 449 (2017).Google Scholar
  20. 20.
    Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulovic, Nat. Photonics, 7, 13 (2012).Google Scholar
  21. 21.
    V. L. Colvin, M.C. Schlamp and A. P. Alivisatos, Nature, 370, 354 (1994).Google Scholar
  22. 22.
    P.O. Anikeeva, J. E. Halpert, M. G. Bawendi and V. Bulovic, Nano Lett., 9, 2532 (2009).Google Scholar
  23. 23.
    J. Lim, B. G. Jeong, M. Park, J. K. Kim, J.M. Pietryga, Y.-S. Park, V. I. Klimov, C. Lee, D.C. Lee and W.K. Bae, Adv. Mater., 26, 8034 (2014).Google Scholar
  24. 24.
    X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu and E. H. Sargent, Nat. Photonics, 12, 159 (2018).Google Scholar
  25. 25.
    H. Shen, W. Cao, N. T. Shewmon, C. Yang, L.S. Li and J. Xue, Nano Lett., 15, 1211 (2015).Google Scholar
  26. 26.
    J.W. Stouwdam and R.A.J. Janssen, J. Mater. Chem., 18, 1889 (2008).Google Scholar
  27. 27.
    K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J.Y. Han, B.-K. Kim, B.L. Choi and J.M. Kim, Nat. Photon, 3, 341 (2009).Google Scholar
  28. 28.
    T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J.W. Kim, D.H. Kim, J.-Y. Kwon, G. Amaratunga, S.Y. Lee, B.L. Choi, Y. Kuk, J.M. Kim and K. Kim, Nat. Photon, 5, 176 (2011).Google Scholar
  29. 29.
    J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D.Y. Yoon, K. Char, S. Lee and C. Lee, Nano Lett., 12, 2362 (2012).Google Scholar
  30. 30.
    S. Jun, J. Lee and E. Jang, ACS Nano, 7, 1472 (2013).Google Scholar
  31. 31.
    H. Woo, J. Lim, Y. Lee, J. Sung, H. Shin, J. M. Oh, M. Choi, H. Yoon, W.K. Bae and K. Char, J. Mater. Chem. C, 1, 1983 (2013).Google Scholar
  32. 32.
    R. Meerheim, M. Furno, S. Hofmann, B. Lussem and K. Leo, Appl. Phys. Lett., 97, 253305 (2010).Google Scholar
  33. 33.
    A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris and M. Bawendi, Phys. Rev. B, 54, 4843 (1996).Google Scholar
  34. 34.
    T.B. S.A. Crooker, Appl. Phys. Lett., 82, 2793 (2003).Google Scholar
  35. 35.
    D. J. Norris, A. L. Efros, M. Rosen and M. G. Bawendi, Phys. Rev. B, 53, 16347 (1996).Google Scholar
  36. 36.
    J.K. L.M. Kuno, B.O. Dabbousi, F.V. Mikulec and M.G. Bawendi, J. Chem. Phys., 106, 9869 (1997).Google Scholar
  37. 37.
    M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros and M. Rosen, Phys. Rev. Lett., 75, 3728 (1995).Google Scholar
  38. 38.
    L. Biadala, B. Siebers, Y. Beyazit, M.D. Tessier, D. Dupont, Z. Hens, D.R. Yakovlev and M. Bayer, ACS Nano, 10, 3356 (2016).Google Scholar
  39. 39.
    A. Brodu, M.V. Ballottin, J. Buhot, E. J. van Harten, D. Dupont, A. La Porta, P.T. Prins, M.D. Tessier, M. Versteegh, V. Zwiller, S. Bals, Z. Hens, F.T. Rabouw, P. C. M. Christianen, C. de Mello Donega and D. Vanmaekelbergh, ACS Photonics, 5, 3353 (2018).Google Scholar
  40. 40.
    M.A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J.G. Michopoulos, S.G. Lambrakos, N. Bernstein, J.L. Lyons, T. Stöferle, R.F. Mahrt, M.V. Kovalenko, D. J. Norris, G. Rainò and A. L. Efros, Nature, 553, 189 (2018).Google Scholar
  41. 41.
    C. Adachi, M. A. Baldo, M. E. Thompson and S.R. Forrest, J. Appl. Phys., 90, 5048 (2001).Google Scholar
  42. 42.
    Y. Ma, H. Zhang, J. Shen and C. Che, Synth. Met., 94, 245 (1998).Google Scholar
  43. 43.
    M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson and S.R. Forrest, Nature, 395, 151 (1998).Google Scholar
  44. 44.
    K. Goushi, K. Yoshida, K. Sato and C. Adachi, Nat. Photon, 6, 253 (2012).Google Scholar
  45. 45.
    A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki and C. Adachi, Appl. Phys. Lett., 98, 083302 (2011).Google Scholar
  46. 46.
    D. Yokoyama, Y. Setoguchi, A. Sakaguchi, M. Suzuki and C. Adachi, Adv. Funct. Mater., 20, 386 (2010).Google Scholar
  47. 47.
    L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M.V. Kovalenko, Nano Lett., 15, 3692 (2015).Google Scholar
  48. 48.
    Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi and J. H. Fendler, J. Phys. Chem., 100, 8927 (1996).Google Scholar
  49. 49.
    L. Qu and X. Peng, J. Am. Chem. Soc., 124, 2049 (2002).Google Scholar
  50. 50.
    P. Reiss, J. Bleuse and A. Pron, Nano Lett., 2, 781 (2002).Google Scholar
  51. 51.
    J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T.D. Mishima, M. B. Johnson and X. Peng, J. Am. Chem. Soc., 125, 12567 (2003).Google Scholar
  52. 52.
    R. Xie, U. Kolb, J. Li, T. Basché and A. Mews, J. Am. Chem. Soc., 127, 7480 (2005).Google Scholar
  53. 53.
    J. McBride, J. Treadway, L.C. Feldman, S. J. Pennycook and S. J. Rosenthal, Nano Lett., 6, 1496 (2006).Google Scholar
  54. 54.
    L. Li and P. Reiss, J. Am. Chem. Soc., 130, 11588 (2008).Google Scholar
  55. 55.
    J.M. Pietryga, D. J. Werder, D. J. Williams, J.L. Casson, R.D. Schaller, V. I. Klimov and J. A. Hollingsworth, J. Am. Chem. Soc., 130, 4879 (2008).Google Scholar
  56. 56.
    W.K. Bae, K. Char, H. Hur and S. Lee, Chem. Mater., 20, 531 (2008).Google Scholar
  57. 57.
    S.-W. Kim, J.P. Zimmer, S. Ohnishi, J.B. Tracy, J.V. Frangioni and M. G. Bawendi, J. Am. Chem. Soc., 127, 10526 (2005).Google Scholar
  58. 58.
    J. Lim, W.K. Bae, D. Lee, M.K. Nam, J. Jung, C. Lee, K. Char and S. Lee, Chem. Mater., 23, 4459 (2011).Google Scholar
  59. 59.
    S. Kim, T. Kim, M. Kang, S. K. Kwak, T.W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim and S.-W. Kim, J. Am. Chem. Soc., 134, 3804 (2012).Google Scholar
  60. 60.
    J. Lim, M. Park, W.K. Bae, D. Lee, S. Lee, C. Lee and K. Char, ACS Nano, 7, 9019 (2013).Google Scholar
  61. 61.
    E. Jang, S. Jun, H. Jang, J. Lim, B. Kim and Y. Kim, Adv. Mater., 22, 3076 (2010).Google Scholar
  62. 62.
    H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend and T.-W. Lee, Science, 350, 1222 (2015).Google Scholar
  63. 63.
    H. Huang, M. I. Bodnarchuk, S.V. Kershaw, M.V. Kovalenko and A. L. Rogach, ACS Energy Lett., 2, 2071 (2017).Google Scholar
  64. 64.
    M.V. Kovalenko, L. Protesescu and M. I. Bodnarchuk, Science, 358, 745 (2017).Google Scholar
  65. 65.
    A. Swarnkar, V. K. Ravi and A. Nag, ACS Energy Lett., 2, 1089 (2017).Google Scholar
  66. 66.
    V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A.R. S. Kandada, S.D. Stranks, M.M. Lee, G. Lanzani, H. J. Snaith and A. Petrozza, Nat. Commun., 5, 3586 (2014).Google Scholar
  67. 67.
    T. Chiba, K. Hoshi, Y.-J. Pu, Y. Takeda, Y. Hayashi, S. Ohisa, S. Kawata and J. Kido, ACS Appl. Mater. Interfaces, 9, 18054 (2017).Google Scholar
  68. 68.
    J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han and H. Zeng, Adv. Mater., 29, 1603885 (2017).Google Scholar
  69. 69.
    K. Hoshi, T. Chiba, J. Sato, Y. Hayashi, Y. Takahashi, H. Ebe, S. Ohisa and J. Kido, ACS Appl. Mater. Interfaces, 10, 24607 (2018).Google Scholar
  70. 70.
    F. Yan, J. Xing, G. Xing, L. Quan, S.T. Tan, J. Zhao, R. Su, L. Zhang, S. Chen, Y. Zhao, A. Huan, E. H. Sargent, Q. Xiong and H.V. Demir, Nano Lett., 18, 3157 (2018).Google Scholar
  71. 71.
    B.N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth and H. Htoon, Nano Lett., 12, 331 (2012).Google Scholar
  72. 72.
    V. I. Klimov, Annu. Rev. Condens. Matter Phys., 5, 285 (2014).Google Scholar
  73. 73.
    W.K. Bae, L. A. Padilha, Y.-S. Park, H. McDaniel, I. Robel, J. M. Pietryga and V. I. Klimov, ACS Nano, 7, 3411 (2013).Google Scholar
  74. 74.
    Y.-S. Park, J. Lim, N. S. Makarov and V. I. Klimov, Nano Lett., 17, 5607 (2017).Google Scholar
  75. 75.
    C. Javaux, B. Mahler, B. Dubertret, A. Shabaev, A.V. Rodina, A. L. Efros, D.R. Yakovlev, F. Liu, M. Bayer, G. Camps, L. Biadala, S. Buil, X. Quelin and J. P. Hermier, Nat. Nanotechnol., 8, 206 (2013).Google Scholar
  76. 76.
    P.T.K. Chin, C. de Mello Donegá, S. S. van Bavel, S. C. J. Meskers, N. A. J. M. Sommerdijk and R.A. J. Janssen, J. Am. Chem. Soc., 129, 14880 (2007).Google Scholar
  77. 77.
    D. Oron, M. Kazes and U. Banin, Phys. Rev. B, 75, 035330 (2007).Google Scholar
  78. 78.
    S.A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K.R. Zavadil, W.O. Wallace, D. Werder and V. I. Klimov, J. Am. Chem. Soc., 129, 11708 (2007).Google Scholar
  79. 79.
    Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D.A. Bussian, V. I. Klimov and J. A. Hollingsworth, J. Am. Chem. Soc., 130, 5026 (2008).Google Scholar
  80. 80.
    B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier and B. Dubertret, Nat. Mater., 7, 659 (2008).Google Scholar
  81. 81.
    G. E. Cragg and A.L. Efros, Nano Lett., 10, 313 (2010).Google Scholar
  82. 82.
    J. I. Climente, J. L. Movilla and J. Planelles, Small, 8, 754 (2012).Google Scholar
  83. 83.
    F. García-Santamaría, S. Brovelli, R. Viswanatha, J.A. Hollingsworth, H. Htoon, S. A. Crooker and V. I. Klimov, Nano Lett., 11, 687 (2011).Google Scholar
  84. 84.
    Y. S. Park, A.V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J.A. Hollingsworth, V. I. Klimov and H. Htoon, Phys. Rev. Lett., 106, 187401 (2011).Google Scholar
  85. 85.
    V. I. Klimov, S.A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J.A. McGuire and A. Piryatinski, Nature, 447, 441 (2007).Google Scholar
  86. 86.
    A. Piryatinski, S.A. Ivanov, S. Tretiak and V. I. Klimov, Nano Lett., 7, 108 (2007).Google Scholar
  87. 87.
    J. Lim, Y.-S. Park and V. I. Klimov, Nat. Mater., 17, 42 (2017).Google Scholar
  88. 88.
    J. Lim, Y.-S. Park, K. Wu, H. J. Yun and V. I. Klimov, Nano Lett., 18, 6645 (2018).Google Scholar
  89. 89.
    T. E. Parliament, Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment, <https://doi.org/eur-lex.europa.eu/legal-content/EN/TXT/?qid=1399998664957&uri=CELEX:02011L0065-20140129>(2011).Google Scholar
  90. 90.
    T. Kim, S.W. Kim, M. Kang and S.-W. Kim, J. Phys. Chem. Lett., 3, 214 (2011).Google Scholar
  91. 91.
    Y.W. Cao and U. Banin, Angew. Chem. Int. Ed., 38, 3692 (1999).Google Scholar
  92. 92.
    Y. Cao and U. Banin, J. Am. Chem. Soc., 122, 9692 (2000).Google Scholar
  93. 93.
    S.-W. Kim, J.P. Zimmer, S. Ohnishi, J.B. Tracy, J.V. Frangioni and M. G. Bawendi, J. Am. Chem. Soc., 127, 10526 (2005).Google Scholar
  94. 94.
    Z. Kang, Y. Liu, C. H.A. Tsang, D.D.D. Ma, X. Fan, N.-B. Wong and S.-T. Lee, Adv. Mater., 21, 661 (2009).Google Scholar
  95. 95.
    J. Zou, R.K. Baldwin, K. A. Pettigrew and S.M. Kauzlarich, Nano Lett., 4, 1181 (2004).Google Scholar
  96. 96.
    D. S. English, L. E. Pell, Z. Yu, P. F. Barbara and B. A. Korgel, Nano Lett., 2, 681 (2002).Google Scholar
  97. 97.
    J.D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston and B. A. Korgel, J. Am. Chem. Soc., 123, 3743 (2001).Google Scholar
  98. 98.
    H. McDaniel, A.Y. Koposov, S. Draguta, N.S. Makarov, J.M. Pietryga and V. I. Klimov, J. Phys. Chem. C, 118, 16987 (2014).Google Scholar
  99. 99.
    E. Witt and J. Kolny-Olesiak, Chem. Eur. J., 19, 9746 (2013).Google Scholar
  100. 100.
    H. McDaniel, N. Fuke, J. M. Pietryga and V. I. Klimov, J. Phys. Chem. Lett., 4, 355 (2013).Google Scholar
  101. 101.
    L. Li, T. J. Daou, I. Texier, T. T. Kim Chi, N.Q. Liem and P. Reiss, Chem. Mater., 21, 2422 (2009).Google Scholar
  102. 102.
    J. Park and S.-W. Kim, J. Mater. Chem., 21, 3745 (2011).Google Scholar
  103. 103.
    B. Chen, H. Zhong, W. Zhang, Z. a. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang and B. Zou, Adv. Funct. Mater., 22, 2081 (2012).Google Scholar
  104. 104.
    P. Ramasamy, N. Kim, Y.-S. Kang, O. Ramirez and J.-S. Lee, Chem. Mater., 29, 6893 (2017).Google Scholar
  105. 105.
    J. H. Chang, P. Park, H. Jung, B. G. Jeong, D. Hahm, G. Nagamine, J. Ko, J. Cho, L.A. Padilha, D.C. Lee, C. Lee, K. Char and W. K. Bae, ACS Nano, 12, 10231 (2018).Google Scholar
  106. 106.
    N. Oh, S. Nam, Y. Zhai, K. Deshpande, P. Trefonas and M. Shim, Nat. Commun., 5, 3642 (2014).Google Scholar
  107. 107.
    S. Nam, N. Oh, Y. Zhai and M. Shim, ACS Nano, 9, 878 (2015).Google Scholar
  108. 108.
    A. Rizzo, C. Nobile, M. Mazzeo, M.D. Giorgi, A. Fiore, L. Carbone, R. Cingolani, L. Manna and G. Gigli, ACS Nano, 3, 1506 (2009).Google Scholar
  109. 109.
    R. A. M. Hikmet, P.T. K. Chin, D.V. Talapin and H. Weller, Adv. Mater., 17, 1436 (2005).Google Scholar
  110. 110.
    D.-E. Yoon, W.D. Kim, D. Kim, D. Lee, S. Koh, W.K. Bae and D.C. Lee, J. Phys. Chem. C, 121, 24837 (2017).Google Scholar
  111. 111.
    P.C. Sercel and A. L. Efros, Nano Lett., 18, 4061 (2018).Google Scholar
  112. 112.
    L.T. Kunneman, J.M. Schins, S. Pedetti, H. Heuclin, F.C. Grozema, A. J. Houtepen, B. Dubertret and L.D. A. Siebbeles, Nano Lett., 14, 7039 (2014).Google Scholar
  113. 113.
    L. Biadala, F. Liu, M.D. Tessier, D.R. Yakovlev, B. Dubertret and M. Bayer, Nano Lett., 14, 1134 (2014).Google Scholar
  114. 114.
    S. Ithurria, M.D. Tessier, B. Mahler, R.P.S.M. Lobo, B. Dubertret and A. L. Efros, Nat. Mater., 10, 936 (2011).Google Scholar
  115. 115.
    H. Htoon, J. A. Hollingsworth, R. Dickerson and V. I. Klimov, Phys. Rev. Lett., 91, 227401 (2003).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.SKKU Advanced Institute of Nano Technology (SAINT)Sungkyunkwan UniversitySuwon, Gyeonggi-doKorea
  2. 2.Department of Chemical Engineering & Department of Energy System ResearchAjou UniversitySuwon, Gyeonggi-doKorea

Personalised recommendations