Korean Journal of Chemical Engineering

, Volume 36, Issue 2, pp 272–280 | Cite as

The potential use of pulsed electric field to assist in polygodial extraction from Horopito (Pseudowintera colorata) leaves

  • Joanna Nadia
  • Marliya Ismail
  • Kaveh Shahbaz
  • Mohammed FaridEmail author
Separation Technology, Thermodynamics


Horopito (Pseudowintera colorata) contains polygodial as an active compound that has many health beneficial properties. The potential of applying a continuous pulsed electric field (PEF) as a pretreatment step prior to solvent extraction of polygodial from Horopito leaves was studied. Horopito leaves suspended in water were subjected to PEF at electric field intensity ranging from 5 to 25 kV/cm and pulse frequencies from 200 to 800Hz. The interaction between electric field intensity and pulse frequency was found to have a significant role in extraction. Both electro-permeabilization and temperature increase from treatment caused some polygodial leaching from the leaves prior to solvent extraction. The study revealed that PEF at low electric field intensity and high frequency is the most effective way to achieve higher solvent extraction yield while minimizing the effect of leaching. The maximum improvement was obtained when PEF at 5 kV/cm and 800Hz for 348 μs were applied, giving a polygodial extraction yield of about 16.6% higher than that of non-PEF treated leaves.


Extraction Horopito (Pseudowintera colorataPolygodial Pulsed Electric Field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. G. Brooker, R. C. Cambie and R. C. Cooper, New Zealand medicinal plants, Heinemann, Auckland (1987).Google Scholar
  2. 2.
    L. J. Metcalf, The cultivation of New Zealand trees & shrubs, Reed Methuen Publishers, Auckland (1987).Google Scholar
  3. 3.
    C. S. Barnes and J. W. Loder, J. Chem., 15, 322 (1962).Google Scholar
  4. 4.
    I. Kubo, Y. W. Lee, M. Petteei, F. Pilkiewicz and K. Nakanishi, J. Chem. Soc. Chem. Commun., 1013 (1976).Google Scholar
  5. 5.
    R. F. McCallion, A. L. Cole, J. R. Walker, J. W. Blunt and M. H. Munro, Planta Med., 44, 134 (1982).CrossRefGoogle Scholar
  6. 6.
    J. Sahu, K. Jain, B. Jain and R. K. Sahu, Pharmacologyonline, 2, 1105 (2011).Google Scholar
  7. 7.
    S. H. Lee, J. R. Lee, C. S. Lunde and I. Kubo, Planta Med., 65, 204 (1999).CrossRefGoogle Scholar
  8. 8.
    N. B. Perry, L. M. Foster and S. D. Lorimer, Phytochemistry, 43, 1201 (1996).CrossRefGoogle Scholar
  9. 9.
    I. Kubo, K. i. Fujita, S. H. Lee and T. J. Ha, Phytother. Res., 19, 1013 (2005).CrossRefGoogle Scholar
  10. 10.
    G. Powell, J. Hardie and J. A. Pickett, Physiol. Entomol., 20, 141 (1995).CrossRefGoogle Scholar
  11. 11.
    P. J. Gerard, N. B. Perry, L. D. Ruf and L. M. Foster, Bull. Entomol. Res., 83, 547 (1993).CrossRefGoogle Scholar
  12. 12.
    S. D. Lorimer, N. B. Perry, L. M. Foster, E. J. Burgess, P. G. C. Douch, M. C. Hamilton, M. J. Donaghy and R. A. McGregor, J. Agric. Food Chem., 44, 2842 (1996).CrossRefGoogle Scholar
  13. 13.
    A. Tânia Maria de Almeida, R. Fabiane Lacerda, K. Helmut and Z. Carlos Leomar, Mem. Inst. Oswaldo Cruz, 96, 831 (2001).CrossRefGoogle Scholar
  14. 14.
    M. G. Derita, M. L. Leiva and S. A. Zacchino, J. Ethnopharmacol., 124, 377 (2009).CrossRefGoogle Scholar
  15. 15.
    M. G. Derita, S. J. Gattuso and S. A. Zacchino, Biochem. Syst. Ecol., 36, 55 (2008).CrossRefGoogle Scholar
  16. 16.
    K. A. Wayman, P. J. de Lange, L. Larsen, C. E. Sansom and N. B. Perry, Phytochemistry, 71, 766 (2010).CrossRefGoogle Scholar
  17. 17.
    D. Muñoz-Concha, H. Vogel, R. Yunes, I. Razmilic, L. Bresciani and A. Malheiros, Biochem. Syst. Ecol., 35, 434 (2007).CrossRefGoogle Scholar
  18. 18.
    C. Starkenmann, L. Luca, Y. Niclass, E. Praz and D. Roquet, J. Agric. Food Chem., 54, 3067 (2006).CrossRefGoogle Scholar
  19. 19.
    R. E. Corbett and P. K. Grant, J. Sci. Food Agric., 9, 733 (1958).CrossRefGoogle Scholar
  20. 20.
    J. Azmir, I. S. M. Zaidul, M. M. Rahman, K. M. Sharif, A. Mohamed, F. Sahena, M. H. A. Jahurul, K. Ghafoor, N. A. N. Norulaini and A. K. M. Omar, J. Food Eng., 117, 426 (2013).CrossRefGoogle Scholar
  21. 21.
    C. Chan, R. Yusoff, G. Ngoh and F. W. Kung, J. Chromatogr. A, 1218, 6213 (2011).CrossRefGoogle Scholar
  22. 22.
    J. Nadia, K. Shahbaz, M. Ismail and M. M. Farid, ACS Sustain. Chem. Eng., 6, 826 (2018).CrossRefGoogle Scholar
  23. 23.
    Forest Herbs Research Ltd., New Zealand Patent NZ520178A (2005).Google Scholar
  24. 24.
    J. Just, T. B. Jordan, B. Paull, A. C. Bissember and J. A. Smith, Org. Biomol. Chem., 13, 11200 (2015).CrossRefGoogle Scholar
  25. 25.
    F. H. R. Ltd., New Zealand Patent, NZ520178A (2005).Google Scholar
  26. 26.
    M. M. Poojary, S. Roohinejad, F. J. Barba, M. Koubaa, E. Puértolas, A. R. Jambrak, R. Greiner and I. Oey, in Handbook of Electroporation, Miklavcic, D., Ed., Springer, Cham, 1 (2017).Google Scholar
  27. 27.
    S. Toepfl, A. Mathys, V. Heinz and D. Knorr, Food Rev. Int., 22, 405 (2006).CrossRefGoogle Scholar
  28. 28.
    F. J. Segovia, E. Luengo, J. J. Corral-Pérez, J. Raso and M. P. Almajano, Ind. Crop. Prod., 65, 390 (2015).CrossRefGoogle Scholar
  29. 29.
    M. Fincan, J. Food Eng., 162, 31 (2015).CrossRefGoogle Scholar
  30. 30.
    E. Puértolas, N. López, G. Saldaña, I. Álvarez and J. Raso, J. Food Eng., 98, 120 (2010).CrossRefGoogle Scholar
  31. 31.
    S. Jeyakomdan, D. S. Jayas and R. A. Holly, J. Food Prot., 62, 1088 (1999).CrossRefGoogle Scholar
  32. 32.
    K. V. Loginova, N. I. Lebovka and E. Vorobiev, J. Food Eng., 106, 127 (2011).CrossRefGoogle Scholar
  33. 33.
    E. Luengo, I. Álvarez and J. Raso, Innov. Food Sci. Emerg. Technol., 17, 79 (2013).CrossRefGoogle Scholar
  34. 34.
    X. Yu, O. Bals, N. Grimi and E. Vorobiev, Ind. Crop. Prod., 74, 309 (2015).CrossRefGoogle Scholar
  35. 35.
    A. Zderic and E. Zondervan, Chem. Eng. Res. Des., 109, 586 (2016).CrossRefGoogle Scholar
  36. 36.
    M. Goettel, C. Eing, C. Gusbeth, R. Straessner and W. Frey, Algal Res., 2, 401 (2013).CrossRefGoogle Scholar
  37. 37.
    Sukardi, S. Soeparman, B. D. Argo and Y. S. Irawan, J. Nat. Sci. Res., 3, 48 (2013).Google Scholar
  38. 38.
    K. Flisar, S. H. Meglic, J. Morelj, J. Golob and D. Miklavcic, Bioelectrochemistry, 100, 44 (2014).CrossRefGoogle Scholar
  39. 39.
    E. Puértolas and I. M. de Marañón, Food Chem., 167, 497 (2015).CrossRefGoogle Scholar
  40. 40.
    S. R. Alkhafaji and M. Farid, Innov. Food Sci. Emerg. Technol., 8, 205 (2007).CrossRefGoogle Scholar
  41. 41.
    D. Xue and M. M. Farid, Innov. Food Sci. Emerg. Technol., 29, 178 (2015).CrossRefGoogle Scholar
  42. 42.
    J. M. Aguilera, G. A. Escobar, J. M. Delvalle and R. Martin, Int. J. Food Sci. Technol., 22, 225 (1987).CrossRefGoogle Scholar
  43. 43.
    S. Maksimovic, J. Ivanovic and D. Skala, Procedia Eng., 42, 1767 (2012).CrossRefGoogle Scholar
  44. 44.
    C. Chan, R. Yusoff and G. Ngoh, Chem. Eng. Res. Des., 92, 1169 (2014).CrossRefGoogle Scholar
  45. 45.
    M. L. Ouzzar, W. Louaer, A. Zemane and A. Meniai, Chem. Eng. Trans., 43, 1129 (2015).Google Scholar
  46. 46.
    E. T. Akhihiero, B. V. Ayodele and G. E. Akpojotor, Af. J. Phys., 16, 105 (2013).Google Scholar
  47. 47.
    L. W. Youard, The function of secondary metabolites in the leaves of Pseudowintera colorata, University of Otago (2012).Google Scholar
  48. 48.
    N. Lebovka and E. Vorobiev, in Electrotechnologies for extraction from food plants and biomaterials, Vorobiev, E. and Lebovka, N., Eds., Springer-Verlag, New York, NY, 39 (2008).Google Scholar
  49. 49.
    H. Jäger, Process performance analysis of pulsed electric field (PEF) food applications, der Technischen Universität Berlin (2012).Google Scholar
  50. 50.
    K. El-Beghiti, Z. Rabhi and E. Vorobiev, J. Sci. Food Agric., 85, 213 (2005).CrossRefGoogle Scholar
  51. 51.
    N. P. Brunton and E. Luengo, in Handbook of Electroporation, Miklavcic, D., Ed., Springer, Cham, 1 (2017).Google Scholar
  52. 52.
    J. H. Harker, J. R. Backhurst and J. F. Richardson, Coulson and Richardson’s chemical engineering: (Particle technology and separation processes), Butterworth-Heinemann (2002).Google Scholar
  53. 53.
    M. A. Tütüncü and T. P. Labuza, J. Food Eng., 30, 433 (1996).CrossRefGoogle Scholar
  54. 54.
    S. Roohinejad, D. W. Everett and I. Oey, Int. J. Food Sci. Technol., 49, 2120 (2014).CrossRefGoogle Scholar
  55. 55.
    E. Luengo, J. M. Martínez, I. Álvarez and J. Raso, Ind. Crop. Prod., 84, 28 (2016).CrossRefGoogle Scholar
  56. 56.
    A. Meullemiestre, C. Breil, M. Abert-Vian and F. Chemat, Modern Techniques and Solvents for the Extraction of Microbial Oils, Springer International Publishing, Cham [u. a. ] (2015).CrossRefGoogle Scholar
  57. 57.
    S. Asavasanti, S. Ersus, W. Ristenpart, P. Stroeve and D. M. Barrett, J. Food Sci., 75, E443 (2010).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Joanna Nadia
    • 1
  • Marliya Ismail
    • 1
  • Kaveh Shahbaz
    • 1
  • Mohammed Farid
    • 1
    Email author
  1. 1.Department of Chemical and Materials EngineeringUniversity of AucklandAucklandNew Zealand

Personalised recommendations