Korean Journal of Chemical Engineering

, Volume 36, Issue 2, pp 226–235 | Cite as

Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater

  • Xinling Xie
  • Jie Huang
  • Youquan ZhangEmail author
  • Zhangfa Tong
  • Anping Liao
  • Xingkui Guo
  • Zuzeng QinEmail author
  • Zhanhu GuoEmail author
Environmental Engineering


Aminated cassava residue magnetic microspheres (ACRPM) were synthesized via an inverse emulsion method by using chemically modified cassava residue as a crude material, and acrylic acid (AA), acrylamide (AM), and methyl methacrylate (MMA) as monomers and a polyethylene glycol/methanol system (PEG/MeOH) as the porogen. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption and vibrating sample magnetometry (VSM) were used to characterize the ACRPM. The results indicated that amino groups were grafted to the cassava residue magnetic microspheres, and the Fe3O4 nanoparticles were encapsulated in the microspheres. After porogen was added, the particle size of the ACRPM decreased from 16.5 μm to 150 nm with a pore volume of 0.05510 m3/g, and the specific surface area of the ACRPM increased from 3.02 to 12.34 m2/g. The ACRPM were superparamagnetic, and the saturation magnetization was 9.8 emu/g. The maximum adsorption capacity of Pb(II) on the ACRPM was 390 mg/g. The ACRPM exhibited a large specific surface area and provided many adsorption sites for metal ion adsorption, which favored a high adsorption capacity. Additionally, the Pb(II) adsorption process was fitted to pseudo-second-order kinetic and Langmuir isothermal adsorption models. This suggests that the Pb(II) adsorption process was dominated by a chemical reaction process and that chemisorption was the rate-controlling step during the Pb(II) removal process. In addition, the adsorbent exhibited good stability after six consecutive reuses.


Aminated Cassava Residue Magnetic Microspheres Inverse Emulsion Polyethylene Glycol/Methanol System Pb(II) Adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_190_MOESM1_ESM.pdf (76 kb)
Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater


  1. 1.
    E. Da’na, Micropor. Mesopor. Mater., 247, 145 (2017).Google Scholar
  2. 2.
    G. Tepanosyan, L. Sahakyan, O. Belyaeva, N. Maghakyan and A. Saghatelyan, Chemosphere, 184, 1230 (2017).Google Scholar
  3. 3.
    J. Ma, Y. Liu, O. Ali, Y. Wei, S. Zhang, Y. Zhang, T. Cai, C. Liu and S. Luo, J. Hazard. Mater., 344, 1034 (2018).Google Scholar
  4. 4.
    T. A. Kurniawan, G.Y. Chan, W. H. Lo and S. Babel, Sci. Total Environ., 366, 409 (2006).Google Scholar
  5. 5.
    Y. Ma, L. Lv, Y. Guo, Y. Fu, Q. Shao, T. Wu, S. Guo, K. Sun, X. Guo, E.K. Wujcik and Z. Guo, Poly, 128, 12 (2017).Google Scholar
  6. 6.
    J. Huang, Y. Cao, Q. Shao, X. Peng and Z. Guo, Ind. Eng. Chem. Res., 56, 10689 (2017).Google Scholar
  7. 7.
    U.K. Garg, M. P. Kaur, V. K. Garg and D. Sud, J. Hazard. Mater., 140, 60 (2007).Google Scholar
  8. 8.
    M. I. Shariful, T. Sepehr, M. Mehrali, B.C. Ang and M.A. Amalina, J. Appl. Polym. Sci., 135, 45851 (2018).Google Scholar
  9. 9.
    Z. Xu, G. Gao, B. Pan, W. Zhang and L. Lv, Water Res., 87, 378 (2015).Google Scholar
  10. 10.
    I. Petrinic, J. Korenak, D. Povodnik and C. Hélix-Nielsen, J. Clean. Prod., 101, 292 (2015).Google Scholar
  11. 11.
    J. Altmann, A. S. Ruhl, F. Zietzschmann and M. Jekel, Water Res., 55, 185 (2014).Google Scholar
  12. 12.
    M.A. Shaker and H. M. albishri, Chemosphere, 111, 587 (2014).Google Scholar
  13. 13.
    N. Li, F. Fu, J. Lu, Z. Ding, B. Tang and J. Pang, Environ. Pollut., 220, 1376 (2017).Google Scholar
  14. 14.
    L. Lv, N. Chen, C. Feng, J. Zhang and M. Li, RSC Adv., 7, 27992 (2017).Google Scholar
  15. 15.
    H.-C. Dang, X. Yuan, Q. Xiao, W.-X. Xiao, Y.-K. Luo, X.-L. Wang, F. Song and Y.-Z. Wang, J. Environ. Chem. Eng., 5, 4505 (2017).Google Scholar
  16. 16.
    N. M. Noor, R. Othman, N.M. Mubarak and E. C. Abdullah, J. Taiwan Inst. Chem. Eng., 78, 168 (2017).Google Scholar
  17. 17.
    W. Park, A.C. Gordon, S. Cho, X. Huang, K.R. Harris, A.C. Larson and D.-H. Kim, ACS Appl. Mater. Inter., 9, 13819 (2017).Google Scholar
  18. 18.
    N. Rodkate and M. Rutnakornpituk, Carbohyd. Polym., 151, 251 (2016).Google Scholar
  19. 19.
    X. Zhang, N. Zhang, C. Du, P. Guan, X. Gao, C. Wang, Y. Du, S. Ding and X. Hu, Chem. Eng. J., 317, 988 (2017).Google Scholar
  20. 20.
    Z. Hu, Q. Shao, M. G. Moloney, X. Xu, D. Zhang, J. Li, C. Zhang and Y. Huang, Macromolecules, 50, 1422 (2017).Google Scholar
  21. 21.
    W. Zhu, W. Ma, C. Li, J. Pan and X. Dai, Chem. Eng. J., 276, 249 (2015).Google Scholar
  22. 22.
    J. Liu, H.-T. Wu, J.-f. Lu, X.-y. Wen, J. Kan and C.-h. Jin, Chem. Eng. J., 262, 803 (2015).Google Scholar
  23. 23.
    J. Xie, G. Zhong, C. Cai, C. Chen and X. Chen, Talanta, 169, 98 (2017).Google Scholar
  24. 24.
    J. Huang, P. Su, L. Zhou and Y. Yang, Colloids Surf., A, 490, 241 (2016).Google Scholar
  25. 25.
    P. Pingmuanglek, N. Jakrawatana and S. H. Gheewala, J. Clean. Prod., 162, 1075 (2017).Google Scholar
  26. 26.
    H. Jiang, Y. Qin, S. I. Gadow and Y.-Y. Li, Int. J. Hydrogen Energy, 42, 2868 (2017).Google Scholar
  27. 27.
    H. Lu, C. Lv, M. Zhang, S. Liu, J. Liu and F. Lian, Energy Convers. Manage., 132, 251 (2017).Google Scholar
  28. 28.
    J. Cheng, J. Zhang, R. Lin, J. Liu, L. Zhang and K. Cen, Bioresour. Technol., 228, 348 (2017).Google Scholar
  29. 29.
    X. Xie, H. Xiong, Y. Zhang, Z. Tong, A. Liao and Z. Qin, J. Environ. Chem. Eng., 5, 2800 (2017).Google Scholar
  30. 30.
    A.R. Garcia, C. Lacko, C. Snyder, A. C. Bohórquez, C. E. Schmidt and C. Rinaldi, Colloids Surf. Physicochem. Eng. Aspects, 529, 119 (2017).Google Scholar
  31. 31.
    Z. Guo, J. Fan, J. Zhang, Y. Kang, H. Liu, L. Jiang and C. Zhang, J. Taiwan Inst. Chem. Eng., 58, 290 (2016).Google Scholar
  32. 32.
    A. Hajlane, H. Kaddami and R. Joffe, Ind. Crop. Prod., 100, 41 (2017).Google Scholar
  33. 33.
    D. Morillo Martín, M. Faccini, M.A. García and D. Amantia, J. Environ. Chem. Eng., 6, 236 (2018).Google Scholar
  34. 34.
    Q. Lin, J. Pan, Q. Lin and Q. Liu, J. Hazard. Mater., 263, 517 (2013).Google Scholar
  35. 35.
    L. Lu, J. Li, D. H. L. Ng, P. Yang, P. Song and M. Zuo, J. Ind. Eng. Chem., 46, 315 (2017).Google Scholar
  36. 36.
    W. Wang, T. Liang, H. Bai, W. Dong and X. Liu, Carbohydr. Polym., 179, 297 (2018).Google Scholar
  37. 37.
    T. Zhai, Q. Zheng, Z. Cai, H. Xia and S. Gong, Carbohydr. Polym., 148, 300 (2016).Google Scholar
  38. 38.
    L. Wang and D.E. Giammar, J. Colloid Interface Sci., 448, 331 (2015).Google Scholar
  39. 39.
    X. Liu, M. Liu and L. Zhang, J. Colloid Interface Sci., 511, 135 (2018).Google Scholar
  40. 40.
    D. Kolodynska, J. Krukowska-Bak, J. Kazmierczak-Razna and R. Pietrzak, Micropor. Mesopor. Mater., 244, 127 (2017).Google Scholar
  41. 41.
    N. A. Fakhre and B.M. Ibrahim, J. Hazard. Mater., 343, 324 (2018).Google Scholar
  42. 42.
    X. Ma, X. Liu, D. P. Anderson and P.R. Chang, Food Chem., 181, 133 (2015).Google Scholar
  43. 43.
    Q. Liu, F. Li, H. Lu, M. Li, J. Liu, S. Zhang, Q. Sun and L. Xiong, Food Chem., 242, 256 (2018).Google Scholar
  44. 44.
    N. Yin, K. Wang, Y. A. Xia and Z. Li, Desalination, 430, 120 (2018).Google Scholar
  45. 45.
    T. Liu, X. Han, Y. Wang, L. Yan, B. Du, Q. Wei and D. Wei, J. Colloid Interface Sci., 508, 405 (2017).Google Scholar
  46. 46.
    Q. Yuan, Y. Chi, N. Yu, Y. Zhao, W. Yan, X. Li and B. Dong, Mater. Res. Bull., 49, 279 (2014).Google Scholar
  47. 47.
    H. L. Fan, S. F. Zhou, W. Z. Jiao, G. S. Qi and Y. Z. Liu, Carbohyd. Polym., 174, 1192 (2017).Google Scholar
  48. 48.
    Q. Hu, Z. Xiao, X. Xiong, G. Zhou and X. Guan, J. Environ. Sci., 27, 207 (2015).Google Scholar
  49. 49.
    J.N. Putro, S. P. Santoso, S. Ismadji and Y.-H. Ju, Micropor. Mesopor. Mater., 246, 166 (2017).Google Scholar
  50. 50.
    A.A. Yakout, R. H. El-Sokkary, M. A. Shreadah and O. G. Abdel Hamid, Carbohyd. Polym., 172, 20 (2017).Google Scholar
  51. 51.
    T.W. Cheng, M. L. Lee, M. S. Ko, T. H. Ueng and S. F. Yang, Appl. Clay Sci., 56, 90 (2012).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi UniversityNanningChina
  2. 2.Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular EngineeringUniversity of TennesseeKnoxvilleUSA
  3. 3.Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education InstitutesGuangxi University for NationalitiesNanningChina
  4. 4.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations