Korean Journal of Chemical Engineering

, Volume 36, Issue 1, pp 48–55 | Cite as

Biosorption of Cu(II) from aqueous solution onto immobilized Ficus religiosa branch powder in a fixed bed column: Breakthrough curves and mathematical modeling

  • Madiha Tariq
  • Umar FarooqEmail author
  • Makshoof Athar
  • Muhammad Salman
  • Muqaddas Tariq
Environmental Engineering


We investigated the adsorption potential of powdered branches from Ficus religiosa, an abundantly available plant, for the removal of Cu(II) from aqueous solution via column studies. Biomass was used as silica immobilized form and characterized using available techniques, including Fourier transformed infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Breakthrough curve approach was used to explain removal capacity of biomass in a continuous flow mode, using different operating parameters like bed height (5-30 cm), inlet metal concentration (100-300mg/L) and pH (3-5) of the solution, at a fixed flow rate of 2mL/min. Biosorption of Cu(II) favored with increased service time (breakthrough and exhaust time) of the column with an increase in pH of inlet solution. Maximum biosorption capacity (17.5mg/g) for Cu(II) was achieved at 5 cm bed height, pH 5 and 300 mg/L influent Cu(II) concentration. Findings suggested that Ficus religiosa branch powder takes less service time and thus triggers fast removal of metal ions. Bed depth service time (BDST), Thomas and Yoon-Nelson models were effectively applied to the breakthrough data. The study indicated that the immobilized powdered branches could be used for the effective removal of Cu(II) ions in a continuous flow mode.


Ficus religiosa Copper Breakthrough Curve Biosorption Fixed Bed BDST Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.M. Hasfalina, R. Z. Maryam, C.A. Luqman and M. Rashid, APCBEE Procedia, 3, 255 (2012).CrossRefGoogle Scholar
  2. 2.
    A. Tor, N. Danaoglu, G. Arslan and Y. Cengeloglu, J. Hazard. Mater., 164, 271 (2009).CrossRefGoogle Scholar
  3. 3.
    A.K. Christoforidis, S. Orfanidis, S.K. Papageorgiou, A.N. Lazaridou, E. P. Favvas and A.C. Mitropoulos, Chem. Eng. J., 277, 334 (2015).CrossRefGoogle Scholar
  4. 4.
    V. S. Munagapati, V. Yarramuthi, S. K. Nadavala, S.R. Alla and K. Abburi, Chem. Eng. J., 157, 357 (2010).CrossRefGoogle Scholar
  5. 5.
    Y. Nuhoglu and E. Oguz, Process. Biochem., 38, 1627 (2003).CrossRefGoogle Scholar
  6. 6.
    E. Hassan, Chem. Int., 2, 89 (2016).Google Scholar
  7. 7.
    K.D. Ogundipe and A. Babarinde, Chem. Int., 3, 135 (2017).Google Scholar
  8. 8.
    M.A. Martín-Lara, G. Blázquez, M. Calero, A. I. Almendros and A. Ronda, Int. J. Miner. Proces., 148, 72 (2016).CrossRefGoogle Scholar
  9. 9.
    G. Yan and T. Viraraghavan, Bioresour. Technol., 78, 243 (2001).CrossRefGoogle Scholar
  10. 10.
    P. Goyal, M.M. Srivastava and S. Srivastava, J. Nucl. Agri. Biol., 36, 16 (2007).Google Scholar
  11. 11.
    B. Atkinson, F. Bux and H. Kasan, Water S. A., 24, 129 (1998).Google Scholar
  12. 12.
    D. Singh, B. Singh and R.K. Goel, J. Ethnopharmacol., 134, 565 (2011).CrossRefGoogle Scholar
  13. 13.
    Z.M. Aslam, N. Ramzan, S. Naveed and N. Feroze, J. Chil. Chem. Soc., 55, 81 (2010).Google Scholar
  14. 14.
    P. Goyal and S. Srivastava, Arch. Environ. Prot., 34, 35 (2008).Google Scholar
  15. 15.
    B. Krishna and P. Venkateswarlu, Indian J. Chem. Technol., 18, 381 (2011).Google Scholar
  16. 16.
    S. Qaiser, A.R. Saleemi and M. Umar, J. Hazard. Mater., 166, 998 (2009).CrossRefGoogle Scholar
  17. 17.
    K. S. Rao, S. Anand and P. Venkateswarlu, CLEAN, 39, 384 (2011).Google Scholar
  18. 18.
    A.-u.-R. Qureshi, U. Farooq, M. Athar, M. Salman and N. Rehmat, Des. Water Treat., 82, 201 (2017).Google Scholar
  19. 19.
    U. Farooq, M. Athar, M.A. Khan and J. A. Kozinski, Environ. Monit. Assess., 185, 845 (2013).CrossRefGoogle Scholar
  20. 20.
    A.A. Abia and E.D. Asuquo, Tsing. Sci. Technol., 12, 485 (2007).CrossRefGoogle Scholar
  21. 21.
    M. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla and F. Carrasco-Marin, Carbon, 37, 1215 (1999).CrossRefGoogle Scholar
  22. 22.
    S. Tunali Akar, A. Gorgulu, T. Akar and S. Celik, Chem. Eng. J., 168, 125 (2011).CrossRefGoogle Scholar
  23. 23.
    G. S. Bohart and E.Q. Adams, J. Amer. Chem. Soc., 42, 523 (1920).CrossRefGoogle Scholar
  24. 24.
    H.C. Thomas, J. Am. Chem. Soc., 66, 1664 (1944).CrossRefGoogle Scholar
  25. 25.
    Y. H. Yoon and J. H. Nelson, Am. Ind. Hyg. Assoc. J., 45, 509 (1984).CrossRefGoogle Scholar
  26. 26.
    E. Heraldy, W.W. Lestari, D. Permatasari and D.D. Arimurti, J. Environ. Chem. Eng., 6, 1201 (2018).CrossRefGoogle Scholar
  27. 27.
    R. Bodirlau and C.A. Teaca, Roman. J. Phys., 54, 93 (2009).Google Scholar
  28. 28.
    R. Sankar, R. Maheswari, S. Karthik, K. S. Shivashangari and V. Ravikumar, Mater. Sci. Eng. C., 44, 234 (2014).CrossRefGoogle Scholar
  29. 29.
    T. Chuah, A. Jumasiah, I. Azni, S. Katayon and S.T. Choong, Desalination, 175, 305 (2005).CrossRefGoogle Scholar
  30. 30.
    U. Farooq, J. A. Kozinski, M. A. Khan and M. Athar, Bioresour. Technol., 101, 5043 (2010).CrossRefGoogle Scholar
  31. 31.
    S. Hydari, H. Sharififard, M. Nabavinia and M. reza Parvizi, Chem. Eng. J., 193, 276 (2012).CrossRefGoogle Scholar
  32. 32.
    K. S. Bharathi and S. P.T. Ramesh, Appl. Water Sci., 3, 673 (2013).CrossRefGoogle Scholar
  33. 33.
    H. Muhamad, H. Doan and A. Lohi, Chem. Eng. J., 158, 369 (2010).CrossRefGoogle Scholar
  34. 34.
    M. Amin, A. Alazba and M. Shafiq, GLOBAL NEST JOURNAL, 19, 464 (2017).CrossRefGoogle Scholar
  35. 35.
    M. Kapur and M. K. Mondal, Des. Water Treat., 57, 12192 (2016)CrossRefGoogle Scholar
  36. 36.
    V. Mishra, C. Balomajumdar and V.K. Agarwal, J. Waste Manage., 2013, 1 (2013).CrossRefGoogle Scholar
  37. 37.
    S. Bunluesin, M. Kruatrachue, P. Pokethitiyook, S. Upatham and G.R. Lanza, J. Biosci. Bioeng., 103, 509 (2007).CrossRefGoogle Scholar
  38. 38.
    J. Lopez-Cervantes, D. I. Sanchez-Machado, R.G. Sanchez-Suarte and M. A. Correa-Murrieta, Adsorpt. Sci. Technol., 36, 215 (2018).CrossRefGoogle Scholar
  39. 39.
    A. S.A. Aziz, L. A. Manaf, H. C. Man and N. S. Kumar, Environ. Sci. Poll. Res., 21, 7996 (2014).CrossRefGoogle Scholar
  40. 40.
    M.A. Acheampong, K. Pakshirajan, A. P. Annachhatre and P. N. Lens, J. Ind. Eng. Chem., 19, 841 (2013).CrossRefGoogle Scholar
  41. 41.
    X. Luo, Z. Deng, X. Lin and C. Zhang, J. Hazard. Mater., 187, 182 (2011).CrossRefGoogle Scholar
  42. 42.
    E. Oguz and M. Ersoy, Chem. Eng. J., 164, 56 (2010).CrossRefGoogle Scholar
  43. 43.
    W.-C. Tsai, M.D. G. de Luna, H. L. P. Bermillo-Arriesgado, C. M. Futalan, J. I. COlades and M.-W. Wan, Int. J. Polym. Sci., 2016, 1 (2016).CrossRefGoogle Scholar
  44. 44.
    M. Khitous, S. Moussous, A. Selatnia and M. Kherat, Des. Water Treat., 57, 16559 (2016).CrossRefGoogle Scholar
  45. 45.
    P.N. P.P. Sivakumar and P.N. Palanisamy, J. Sci. Ind. Res., 68, 894 (2009).Google Scholar
  46. 46.
    Z.Z. Chowdhury, S. M. Zain, R. A. Khan, R. F. Rafique and K. Khalid, BioResourc., 7, 2895 (2012).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Madiha Tariq
    • 1
  • Umar Farooq
    • 1
    Email author
  • Makshoof Athar
    • 1
  • Muhammad Salman
    • 1
  • Muqaddas Tariq
    • 2
  1. 1.Institute of ChemistryUniversity of the PunjabLahorePakistan
  2. 2.Department of ChemistryUniversity of Engineering and TechnologyLahorePakistan

Personalised recommendations