Korean Journal of Chemical Engineering

, Volume 36, Issue 3, pp 393–403 | Cite as

Impact of pressure on the carbon structure of char during pyrolysis of bituminous coal in pressurized entrained-flow reactor

  • Arash Tahmasebi
  • Kristina Maliutina
  • Jianglong YuEmail author


The impact of pressure on the carbon structure of a Chinese bituminous coal was investigated using a pressurized entrained-flow reactor in the temperature and pressure ranges of 700-900 °C and 0.1-4.0MPa, respectively. Pyrolysis pressure had a significant influence on the physiochemical and carbon structure of chars. The specific surface area and the swelling ratio of chars reached their highest values at 1.0MPa. Fourier transform infrared spectroscopy (FTIR) analysis showed that higher pressures enhanced the decomposition of functional groups in chars. Raman spectroscopy analysis results revealed that at elevated pressures, the organic matrix and functional groups were removed from the char structure, leading to higher ordering of the carbon structure. During X-ray diffraction (XRD) analysis, parameters such as the stacking height (Lc), interlayer spacing (d002) and lateral size of the graphite structures (La) were used to evaluate the graphitic structures in chars. The results showed an increase in Lc, La, and the average number of graphene sheets with pyrolysis pressure, indicating a more ordered carbon structure at elevated pressures. The d-spacing of char was in the range of 3.34-3.37 Å, similar to typical graphitic structures.


Pressurized Entrained-flow Pyrolysis Carbon Structure Raman Spectroscopy Bituminous Coal Carbon Materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Das, H. Chauhan, S. Deka, S. Chaudhary, R. Boruah and B. K. Saikia, Micropor. Mesopor. Mater., 253, 80 (2017).CrossRefGoogle Scholar
  2. 2.
    R. Ye, Z. Peng, A. Metzger, J. Lin, J. A. Mann, K. Huang, C. Xiang, X. Fan, E. L. G. Samuel, L. B. Alemany, A. A. Martí and J. M. Tour, ACS Appl. Mater. Interf., 7, 7041 (2015).CrossRefGoogle Scholar
  3. 3.
    K. Moothi, S. E. Iyuke, M. Meyyappan and R. Falcon, Carbon, 50, 2679 (2012).CrossRefGoogle Scholar
  4. 4.
    Q. Zhou, Z. Zhao, Y. Zhang, B. Meng, A. Zhou and J. Qiu, Energy Fuels, 26, 5186 (2012).CrossRefGoogle Scholar
  5. 5.
    R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N. P. Cook, E. L. G. Samuel, C.-C. Hwang, G. Ruan, G. Ceriotti, A.-R. O. Raji, A. A. Martí and J. M. Tour, Nature Commun., 4, 2943 (2013).CrossRefGoogle Scholar
  6. 6.
    T. Liu, R. Luo, W. Qiao, S.-H. Yoon and I. Mochida, Electrochim. Acta, 55, 1696 (2010).CrossRefGoogle Scholar
  7. 7.
    A. J. Smith, M. J. MacDonald, L. D. Ellis, M. N. Obrovac and J. R. Dahn, Carbon, 50, 3717 (2012).CrossRefGoogle Scholar
  8. 8.
    A. C. Rady, S. Giddey, A. Kulkarni, S. P. S. Badwal and S. Bhattacharya, Electrochim. Acta, 178, 721 (2015).CrossRefGoogle Scholar
  9. 9.
    A. C. Rady, S. Giddey, A. Kulkarni, S. P. S. Badwal, S. Bhattacharya and B. P. Ladewig, Appl. Energy, 120, 56 (2014).CrossRefGoogle Scholar
  10. 10.
    J. McDonald-Wharry, M. Manley-Harris and K. Pickering, Carbon, 59, 383 (2013).CrossRefGoogle Scholar
  11. 11.
    D. J. Harris, D. G. Roberts and D. G. Henderson, Fuel, 85, 134 (2006).CrossRefGoogle Scholar
  12. 12.
    D. Zeng and T. H. Fletcher, Energy Fuels, 19, 1828 (2005).CrossRefGoogle Scholar
  13. 13.
    T. P. Griffin, J. B. Howard and W. A. Peters, Fuel, 73, 591 (1994).CrossRefGoogle Scholar
  14. 14.
    H. Y. Cai, A. J. Güell, I. N. Chatzakis, J. Y. Lim, D. R. Dugwell and R. Kandiyoti, Fuel, 75, 15 (1996).CrossRefGoogle Scholar
  15. 15.
    N. Howaniec, Fuel, 172, 118 (2016).CrossRefGoogle Scholar
  16. 16.
    V. Seebauer, J. Petek and G. Staudinger, Fuel, 76, 1277 (1997).CrossRefGoogle Scholar
  17. 17.
    C. L. Sun, Y. Q. Xiong, Q. X. Liu and M. Y. Zhang, Fuel, 76, 639 (1997).CrossRefGoogle Scholar
  18. 18.
    Y. Yun and G.-B. Lee, Korean J. Chem. Eng., 16, 798 (1999).CrossRefGoogle Scholar
  19. 19.
    F. Jiménez, F. Mondragón and D. López, J. Anal. Appl. Pyrol., 95, 164 (2012).CrossRefGoogle Scholar
  20. 20.
    C. W. Lee, A. W. Scaroni and R. G. Jenkins, Fuel, 70, 957 (1991).CrossRefGoogle Scholar
  21. 21.
    H. Wu, G. Bryant, K. Benfell and T. Wall, Energy Fuels, 14, 282 (2000).CrossRefGoogle Scholar
  22. 22.
    J. Yu, D. Harris, J. Lucas, D. Roberts, H. Wu and T. Wall, Energy Fuels, 18, 1346 (2004).CrossRefGoogle Scholar
  23. 23.
    D. Zeng, M. Clark, T. Gunderson, W. C. Hecker and T. H. Fletcher, Proc. Combust. Inst., 30, 2213 (2005).CrossRefGoogle Scholar
  24. 24.
    A. Tremel, T. Haselsteiner, M. Nakonz and H. Spliethoff, Energy, 45, 176 (2012).CrossRefGoogle Scholar
  25. 25.
    D. G. Roberts, D. J. Harris and T. F. Wall, Energy Fuels, 17, 887 (2003).CrossRefGoogle Scholar
  26. 26.
    X. Gong and S. Zhang, J. Anal. Appl. Pyrol., 127, 170 (2017).CrossRefGoogle Scholar
  27. 27.
    V. P. Chabalala, N. Wagner and S. Potgieter-Vermaak, Fuel Process. Technol., 92, 750 (2011).CrossRefGoogle Scholar
  28. 28.
    A. Zaida, E. Bar-Ziv, L. R. Radovic and Y.-J. Lee, Proc. Combust. Inst., 31, 1881 (2007).CrossRefGoogle Scholar
  29. 29.
    C. Sheng, Fuel, 86, 2316 (2007).CrossRefGoogle Scholar
  30. 30.
    J. Xiao, F. Li, Q. Zhong, J. Huang, B. Wang and Y. Zhang, J. Anal. Appl. Pyrol., 117, 64 (2016).CrossRefGoogle Scholar
  31. 31.
    Z. Wu, S. Wang, J. Zhao, L. Chen and H. Meng, Fuel, 171, 65 (2016).CrossRefGoogle Scholar
  32. 32.
    S. Li, X. Chen, A. Liu, L. Wang and G. Yu, Bioresour. Technol., 179, 414 (2015).CrossRefGoogle Scholar
  33. 33.
    S. Li, X. Chen, A. Liu, L. Wang and G. Yu, Bioresour. Technol., 155, 252 (2014).CrossRefGoogle Scholar
  34. 34.
    A. Haider and O. Levenspiel, Powder Technol., 58, 63 (1989).CrossRefGoogle Scholar
  35. 35.
    D. Reichel, S. Siegl, C. Neubert and S. Krzack, Fuel, 158, 983 (2015).CrossRefGoogle Scholar
  36. 36.
    S. Niksa, Combust. Flame, 100, 384 (1995).CrossRefGoogle Scholar
  37. 37.
    J. Tomeczek and S. Gil, Fuel, 82, 285 (2003).CrossRefGoogle Scholar
  38. 38.
    K. Maliutina, A. Tahmasebi and J. Yu, Bioresour. Technol., 256, 160 (2018).CrossRefGoogle Scholar
  39. 39.
    H. Y. Park and D. H. Ahn, Korean J. Chem. Eng., 24, 24 (2007).CrossRefGoogle Scholar
  40. 40.
    M. V. Gil, J. Riaza, L. Álvarez, C. Pevida, J. J. Pis and F. Rubiera, Appl. Energy, 91, 67 (2012).CrossRefGoogle Scholar
  41. 41.
    J. L. Yu, V. Strezov, J. Lucas, G. S. Liu and T. Wall, Proc. Combust. Inst., 29, 467 (2002).CrossRefGoogle Scholar
  42. 42.
    D. R. Jenkins and M. R. Mahoney, Fuel, 153, 585 (2015).CrossRefGoogle Scholar
  43. 43.
    J. Yu, J. A. Lucas and T. F. Wall, Prog. Energy Combust. Sci., 33, 135 (2007).CrossRefGoogle Scholar
  44. 44.
    V. Strezov, J. A. Lucas and T. F. Wall, Fuel, 84, 1238 (2005).CrossRefGoogle Scholar
  45. 45.
    C. Li, J. Zhao, Y. Fang and Y. Wang, Energy Fuels, 23, 5099 (2009).CrossRefGoogle Scholar
  46. 46.
    F. Meng, J. Yu, A. Tahmasebi, Y. Han, H. Zhao, J. Lucas and T. Wall, Energy Fuels, 28, 275 (2014).CrossRefGoogle Scholar
  47. 47.
    T. Yuan, A. Tahmasebi and J. Yu, Bioresour. Technol., 175, 333 (2015).CrossRefGoogle Scholar
  48. 48.
    X. Zhu and C. Sheng, Fuel Process. Technol., 91, 837 (2010).CrossRefGoogle Scholar
  49. 49.
    O. Beyssac, B. Goffé, J.-P. Petitet, E. Froigneux, M. Moreau and J.-N. Rouzaud, Spectrochim. Acta A, 59, 2267 (2003).CrossRefGoogle Scholar
  50. 50.
    Y. Yin, J. Zhang and C. Sheng, Korean J. Chem. Eng., 26, 895 (2009).CrossRefGoogle Scholar
  51. 51.
    A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner and U. Pöschl, Carbon, 43, 1731 (2005).CrossRefGoogle Scholar
  52. 52.
    C.-Z. Li, Fuel, 86, 1664 (2007).CrossRefGoogle Scholar
  53. 53.
    F. Tuinstra and J. L. Koenig, J. Chem. Phys., 53, 1126 (1970).CrossRefGoogle Scholar
  54. 54.
    Y. Bai, Y. Wang, S. Zhu, F. Li and K. Xie, Energy, 74, 464 (2014).CrossRefGoogle Scholar
  55. 55.
    X. Li, J.-i. Hayashi and C.-Z. Li, Fuel, 85, 1700 (2006).CrossRefGoogle Scholar
  56. 56.
    D. K. Singh, P. K. Iyer and P. K. Giri, Diam. Relat. Mater., 19, 1281 (2010).CrossRefGoogle Scholar
  57. 57.
    B. Sakintuna, Y. Yürüm and S. Çetinkaya, Energy Fuels, 18, 883 (2004).CrossRefGoogle Scholar
  58. 58.
    K. Gurudatt and V. S. Tripathi, Carbon, 36, 1371 (1998).CrossRefGoogle Scholar
  59. 59.
    B. Feng, S. K. Bhatia and J. C. Barry, Carbon, 40, 481 (2002).CrossRefGoogle Scholar
  60. 60.
    H. Fujimoto and M. Shiraishi, Carbon, 39, 1753 (2001).CrossRefGoogle Scholar
  61. 61.
    T. Kim, J. Lee and K.-H. Lee, RSC Adv., 6, 24667 (2016).CrossRefGoogle Scholar
  62. 62.
    K. S. Yang, Y. J. Yoon, M. S. Lee, W. J. Lee and J. H. Kim, Carbon, 40, 897 (2002).CrossRefGoogle Scholar
  63. 63.
    Y. Yang, Q. Lin, Y. Huang and D. Guo, J. Anal. Appl. Pyrol., 91, 310 (2011).CrossRefGoogle Scholar
  64. 64.
    R. Moriyama, H. Kumagai, J. i. Hayashi, C. Yamaguchi, J. Mondori, H. Matsui and T. Chiba, Carbon, 38, 749 (2000).CrossRefGoogle Scholar
  65. 65.
    Y. Huang, W.-y. Li, G.-s. Wu, J. Feng and Q. Yi, Energy Fuels, 31, 12977 (2017).CrossRefGoogle Scholar
  66. 66.
    T. Hosseini, A. De Girolamo and L. Zhang, Energy Fuels, 32, 3211 (2018).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Arash Tahmasebi
    • 1
    • 2
  • Kristina Maliutina
    • 1
  • Jianglong Yu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Advanced Coal and Coking Technology of Liaoning Province, School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshanChina
  2. 2.Chemical EngineeringUniversity of NewcastleCallaghanAustralia

Personalised recommendations