Korean Journal of Chemical Engineering

, Volume 36, Issue 2, pp 191–196 | Cite as

Effects of Al3+ precipitation onto primitive amorphous Cu-Zn precipitate on methanol synthesis over Cu/ZnO/Al2O3 catalyst

  • Cheonwoo Jeong
  • Jongha Park
  • Jinsung Kim
  • Joon Hyun Baik
  • Young-Woong SuhEmail author
Catalysis, Reaction Engineering


The phase of Cu,Zn,Al precursors strongly affects the activity of their final catalysts. Herein, the Cu,Zn,Al precursor was prepared by precipitation of Al3+ onto primitive, amorphous Cu,Zn precipitate. This precursor turned out to be a phase mixture of zincian malachite and hydrotalcite in which the latter phase was less abundant compared to the co-precipitated precursor. The final catalyst derived from this precursor exhibited a little higher copper surface area and methanol synthesis activity than the co-precipitated counterpart. Therefore, the two precursor phases need to be mixed in an adequate proportion for the preparation of active Cu/ZnO/Al2O3 catalyst.


Methanol Synthesis Cu/ZnO/Al2O3 Sequential Precipitation Precursor Phase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_186_MOESM1_ESM.pdf (87 kb)
Effects of Al3+ precipitation onto primitive amorphous Cu-Zn precipitate on methanol synthesis over Cu/ZnO/Al2O3 catalyst


  1. 1.
    C. Jeong and Y.-W. Suh, Appl. Chem. Eng., 27, 555 (2016).CrossRefGoogle Scholar
  2. 2.
    N.-K. Park and T. J. Lee, Korean J. Chem. Eng., 28(10), 2076 (2011).CrossRefGoogle Scholar
  3. 3.
    D.-L. Vu and J.-W. Lee, Korean J. Chem. Eng., 33(2), 514 (2016).CrossRefGoogle Scholar
  4. 4.
    E. G. Choi, K. H. Song, K.Y. Lee, M. H. Youn, K.T. Park, S. K. Jeong and H. J. Kim, Korean J. Chem. Eng., 35(1), 73 (2018).CrossRefGoogle Scholar
  5. 5.
    W. Li, P. Lu, D. Xu and K. Tao, Korean J. Chem. Eng., 35(1), 110 (2018).CrossRefGoogle Scholar
  6. 6.
    S. Schimpf and M. Muhler, Methanol catalysts, in: K.P. de Jong (Ed.), Synthesis of Solid Catalysts, Wiley-VCH, Weinheim, 329 (2009).CrossRefGoogle Scholar
  7. 7.
    D.M. Whittle, A.A. Mirzaei, J.S. J. Hargreaves, R.W. Joyner, C. J. Kiely, S. H. Taylor and G. J. Hutchings, Phys. Chem. Chem. Phys., 4, 5915 (2002).CrossRefGoogle Scholar
  8. 8.
    B. Bems, M. Schur, A. Dassenoy, H. Junkes, D. Herein and R. Schlögl, Chem. Eur. J., 9, 2039 (2003).CrossRefGoogle Scholar
  9. 9.
    M. Behrens, J. Catal., 267, 24 (2009).CrossRefGoogle Scholar
  10. 10.
    S. Zander, B. Seidlhofer and M. Behrens, Dalton Trans., 41, 13413 (2012).CrossRefGoogle Scholar
  11. 11.
    M. Behrens, S. Zander, P. Kurr, N. Jacobsen, J. Senker, G. Koch, T. Ressler, R.W. Fischer and R. Schlögl, J. Am. Chem. Soc., 135, 6061 (2013).CrossRefGoogle Scholar
  12. 12.
    M. Behrens, I. Kasatkin, S. Kühl and G. Weinberg, Chem. Mater., 22, 386 (2010).CrossRefGoogle Scholar
  13. 13.
    C. Jeong, H. Ham, J.W. Bae, D.-C. Kang, C.-H. Shin, J. H. Baik and Y.-W. Suh, ChemCatChem, 9, 4484 (2017).CrossRefGoogle Scholar
  14. 14.
    J. Kim, C. Jeong, J. H. Baik and Y.-W. Suh, Catal. Today, in press (2018). DOI:10.1016/j.cattod.2018.09.008.Google Scholar
  15. 15.
    M. Behrens, D. Brennecke, F. Girgsdies, S. Kißner, A. Trunschke, N. Nasrudin, S. Zakaria, N.F. Idris, S.B.A. Hamid, B. Kniep, R. Fischer, W. Busser, M. Muhler and R. Schlögl, Appl. Catal. A., 392, 93 (2011).CrossRefGoogle Scholar
  16. 16.
    M.B. Fichtl, J. Schumann, I. Kasatkin, N. Jacobsen, M. Behrens, R. Schlögl, M. Muhler and O. Hinrichsen, Angew. Chem. Int. Ed., 53, 7043 (2014).CrossRefGoogle Scholar
  17. 17.
    S. Kuld, C. Conradsen, P. G. Moses, I. Chorkendorff and J. Sehested, Angew. Chem. Int. Ed., 53, 5941 (2014).CrossRefGoogle Scholar
  18. 18.
    J. Schumann, T. Lunkenbein, A. Tarasov, N. Thomas, R. Schlögl and M. Behrens, ChemCatChem, 6, 2889 (2014).CrossRefGoogle Scholar
  19. 19.
    J. Schumann, M. Eichelbaum, T. Lunkenbein, N. Thomas, M. C. Á. Galván, R. Schlögl and M. Behrens, ACS Catal., 5, 3260 (2015).CrossRefGoogle Scholar
  20. 20.
    M. Behrens, F. Girgsdies, A. Trunschke and R. Schlögl, Eur. J. Inorg. Chem., 1347 (2009).Google Scholar
  21. 21.
    Y. H. Wang, W. G. Gao, H. Wang, Y. E. Zheng, W. Na and K. Z. Li, RSC Adv., 7, 8709 (2017).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Cheonwoo Jeong
    • 1
  • Jongha Park
    • 1
  • Jinsung Kim
    • 1
  • Joon Hyun Baik
    • 2
  • Young-Woong Suh
    • 1
    • 3
    Email author
  1. 1.Department of Chemical EngineeringHanyang UniversitySeoulKorea
  2. 2.Energy Research GroupResearch Institute of Industrial Science & TechnologyPohangKorea
  3. 3.Research Institute of Industrial ScienceHanyang UniversitySeoulKorea

Personalised recommendations