Korean Journal of Chemical Engineering

, Volume 36, Issue 2, pp 281–286 | Cite as

One-pot preparation of LiFePO4/C composites

  • Juan Wang
  • Ji-Yu Li
  • Zhong-Bao Shao
  • Hong-Tao FanEmail author
  • Hong-Qiang RuEmail author
  • Shu-Yan Zang
Materials (Organic, Inorganic, Electronic, Thin Films)


A convenient one-pot method, called high-temperature high-energy mechanical force (HTHEMF), was successfully developed for the preparation of LiFePO4/C composites. Upon the combination of high-temperature with high-energy mechanical force, the whole synthesis process of this method is very simple and only involves two steps, the precursor preparation and the calcination step. The results of XRD, SEM, BET and electrochemical performance tests indicated that after calcination at 600 °C for 9 h, the LiFePO4/C composites have the best properties. The discharge capacity of the composites was 150.3mA h g-1 at 0.1 C. After 30 cycles test, the reversible capacity was 147 mA h g-1 and the retention ratio to the initial capacity was 97.8%. The results indicated that LiFePO4/C composites with good properties can be obtained by one-pot HTHEMF method.


LiFePO4/C Composites Cathode Material High-temperature High-energy Mechanical Force One-pot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997).CrossRefGoogle Scholar
  2. 2.
    Y. K. Chen, Chinese J. Power Sources, 27, 487 (2003).Google Scholar
  3. 3.
    M. S. Whittingham, Chem. Rev., 114, 11414 (2014).CrossRefGoogle Scholar
  4. 4.
    G. Zubi, R. Dufo–López, M. Carvalho and G. Pasaoglu, Renew. Sustain. Energy Rev., 89, 292 (2018).CrossRefGoogle Scholar
  5. 5.
    Q. Gong, Y. S. He, Y. Yang, X. Z. Liao and Z. F. Ma, J. Solid State Electrochem., 16, 1383 (2012).CrossRefGoogle Scholar
  6. 6.
    G. X. Wang, R. Liu, M. Chen, H. C. Kang, H. Kang, X. Li and K. Yan, Korean J. Chem. Eng., 29, 1094 (2012).CrossRefGoogle Scholar
  7. 7.
    Z. H. Wang, L. X. Yuan, W. X. Zhang and Y. H. Huang, J. Alloys Compd., 25, 532 (2012).Google Scholar
  8. 8.
    X. L. Xu, C. Y. Qi, Z. D. Hao, H. Wang and J. T. Jiu, Nano–Micro Lett., 10(1), 1 (2018).Google Scholar
  9. 9.
    F. F. Pan and W. L. Wang, J. Solid State Electrochem., 16, 1423 (2012).CrossRefGoogle Scholar
  10. 10.
    Y. Yin, M. Gao, H. Pan, L. Shen, X. Ye, Y. Liu, P. S. Fedkiw and X. Zhang, J. Power Sources, 199, 256 (2012).CrossRefGoogle Scholar
  11. 11.
    N. Angulakshmi, Sabu Thomas, K. S. Nahm, A. M. Stephan and R. N. Elizabeth, Ionics, 17, 407 (2011).CrossRefGoogle Scholar
  12. 12.
    X. H. Liu and Z. W. Zhao, Powder Technol., 197, 309 (2010).CrossRefGoogle Scholar
  13. 13.
    Y. Wang, B. Sun, J. S. Park and H. S. Kim, J. Alloys Compd., 509, 1040 (2011).CrossRefGoogle Scholar
  14. 14.
    F. Xu, J. D. Zou, Q. Zhao, K. P. Yan, Y. Sun, Y. J. Peng and G. X. Wang, J. Chengdu. Uni., 37(1), 84 (2018).Google Scholar
  15. 15.
    H. Raj and A. Sil, Ionics, 24, 2543 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Y. Liu, C. B. Cao and J. Li, Electrochim. Acta, 55, 3921 (2010).CrossRefGoogle Scholar
  17. 17.
    T. V. S. L. Satyavani, A. Srinivas Kumar and P. S. V. Subba Rao, Eng. Sci. Technol. an Int. J., 19, 178 (2016).CrossRefGoogle Scholar
  18. 18.
    L. Y. Jia and Z. B. Shao, J. Chin. J. Mater. Res., 24, 213 (2010).Google Scholar
  19. 19.
    D. Chen, H. G. Yan and P. Y. Huang, Chin. J. Rare Metal., 27, 293 (2003).Google Scholar
  20. 20.
    H. J. Fecht, E. Hellstern, Z. Fu and W. L. Johnson, J. Metall. Trans., 21A, 2333 (1990).CrossRefGoogle Scholar
  21. 21.
    X. B. Chen, Z. B. Shao and Y. W. Tian, J. Mater. Technol., 26, 67 (2011).CrossRefGoogle Scholar
  22. 22.
    P. Q. Jia, Z. B. Shao and K. R. Liu, Mater. Lett., 130, 71 (2014).CrossRefGoogle Scholar
  23. 23.
    S. Scaccia and M. Carewska, Mater. Res. Bull., 38, 1155 (2003).CrossRefGoogle Scholar
  24. 24.
    S. T. Myung, S. Komaba, N. Hirosaki, H. Yashiro and N. Kumagai, Electrochim. Acta, 49, 4213 (2004).CrossRefGoogle Scholar
  25. 25.
    M. Konarova and I. Taniguchi, Powder Technol., 191, 111 (2009).CrossRefGoogle Scholar
  26. 26.
    S. H. Luo, Z. L. Tang, J. B. Lu and Z. T. Zhang, Ceram. Int., 34, 1349 (2008).CrossRefGoogle Scholar
  27. 27.
    Y. H. Wang, R. Mei and X. M. Yang, Ceram. Int., 40, 8439 (2014).CrossRefGoogle Scholar
  28. 28.
    E. M. Jin, B. Jin, D. K. Jun, K. H. Park, H. B. Gu and K. W. Kim, J. Power Sources, 178, 801 (2008).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.Shenyang University of Chemical TechnologyShenyangChina
  2. 2.School of SciencesNortheastern UniversityShenyangChina
  3. 3.School of Materials and MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations