Advertisement

Use of multiple inter-reboilers to achieve energy savings and improve thermodynamic efficiency of the distillation of N,N-dimethylformamide wastewater

  • Xiaoxin Gao
  • Xueming Yin
  • Song Yang
  • Deming Yang
Research papers
  • 10 Downloads

Abstract

The purification of N,N-dimethylformamide wastewater involves an energy intensive distillation process. We propose a novel energy-saving process scheme involving multiple inter-reboilers sed. In this scheme, ideal thermodynamic model non-random two liquid (NRTL) model was used to calculate the phase equilibrium using Aspen Plus platform. While the relationship between important process parameters and energy consumption by the distillation process was studied, several parameters such as the most suitable positions for the inter-reboilers and the most reasonable steam extraction rates were obtained. The feasibility was detected under the same separation duties and main technological structure. For 10wt% DMF wastewater, the inter-reboilers were installed on the 37th, 38th and 39th plates, while the corresponding heat transferred values were 3,038 kW, 91 kW and 179kW, respectively. In comparison to the conventional distillation process, an energy consumption of 77.43% and thermodynamic efficiency of 65.69% were obtained. For 20 wt% DMF wastewater, the inter-reboilers were installed on the 21st and 25th plate, while the corresponding values for the heat transferred were 1,632kW, and 1,450kW, respectively. In comparison to the conventional distillation process, the energy consumption can be reduced by 71.31%, while the thermodynamic efficiency can be improved by 47.10%.

Keywords

Inter-reboiler Energy-saving Distillation Thermodynamic Efficiency N,N-dimethylformamide Wastewater 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_182_MOESM1_ESM.pdf (63 kb)
Use of multiple inter-reboilers to achieve energy savings and improve thermodynamic efficiency of the distillation of N,N-dimethylformamide wastewater

References

  1. 1.
    Y.M. Wei, W. L. Tian, Y. Y. Zheng, Q. Y. Zhang, L. Jiang and Z. C. Wu, Appl. Phys. Eng., 12(5), 374 (2011).Google Scholar
  2. 2.
    K. C. A. Bromley-Challenor, N. Caggiano and J. S. Knapp, Jind. Microbiol. Biot., 34(18), 4397 (2000).Google Scholar
  3. 3.
    X. Yan, S. X. Guo and D. Yu, Arch. Environ. Con. Tox., 68(4), 592 (2002).CrossRefGoogle Scholar
  4. 4.
    Y.Y. Shan, X. H. Ren, H. J. Wang and W. B. Dong, Struct. Chem., 18(5), 709 (2007).CrossRefGoogle Scholar
  5. 5.
    G. M. Radwan, S. A. Al-Muhtaseb and M. A. Fahim, Fluid Phase Equilib., 129(1-2), 175 (1997).CrossRefGoogle Scholar
  6. 6.
    B. Blanco, M.T. Sanz, S. Beltran, J. L. Cabezas and J. Coca, Fluid Phase Equilib., 175(1), 117 (2000).CrossRefGoogle Scholar
  7. 7.
    E. Chieli, M. Saviozzi, S. Menicagli, T. Branca and P.G. Gervasi, Arch. Toxicol., 69(3), 165 (1995).CrossRefGoogle Scholar
  8. 8.
    J. S. Yang, E.A. Kim, M. Y. Lee and S. K. Kang, Int. Arch. Occup. Environ. Health, 73(7), 463 (2000).CrossRefGoogle Scholar
  9. 9.
    GBZ, Classification for hazards of occupational exposure to toxicant, Standards Press of China, Beijing (2010).Google Scholar
  10. 10.
    X.N. Li, L. N. Kong, Y. Z. Xiang, Y. M. Ju, X.Q. Wu, F. Feng, J. F. Yuan and L. Ma, Sci. China Series B: Chem., 51(11), 1118 (2008).CrossRefGoogle Scholar
  11. 11.
    J. Liang, Q. Zhou and H.C. Tie, Chinese J. Eco., 49(2), 55 (2003).Google Scholar
  12. 12.
    F. Liu, Y. Gao, S. Zhang, X. Yan, F.T. Fan, C.C. Zhao and J. Sun, J. Nanopart Res., 18(2), 1 (2016).Google Scholar
  13. 13.
    C. S. Ye, H. X. Wang, G.Q. Huang and T. Qiu, Chem. Eng. Res. Des., 91(12), 2713 (2013).CrossRefGoogle Scholar
  14. 14.
    A.M. Fulgueras, J. Poudel and D.S. Kim, Korean J. Chem. Eng., 33(1), 46 (2016).CrossRefGoogle Scholar
  15. 15.
    S. Eker and F. Kargi, Bioresour. Technol., 99(7), 2319 (2008).CrossRefGoogle Scholar
  16. 16.
    M. Alborzfar, K. Escande and S. J. Allen, Water Res., 34(11), 2963 (2000).CrossRefGoogle Scholar
  17. 17.
    J. L. Gao, J. Am. Chem. Soc., 115(3), 6893 (1993).CrossRefGoogle Scholar
  18. 18.
    H.R. Eisenhaner, J. WPCF, 36(28), 1116 (1964).Google Scholar
  19. 19.
    G. H. Chen, Sep. Purif. Technol., 1(31), 1 (2003).Google Scholar
  20. 20.
    V. S. Mishra, V. Vijaykumar and J. B. Joshi, Ind. Eng. Chem. Res., 34(2), 48 (1995).Google Scholar
  21. 21.
    J. H. Carey, J. Lawrence and H. M. Tosine, Bull. Environ. Contam. Toxicol., 16(6), 697 (1976).CrossRefGoogle Scholar
  22. 22.
    F. Qasim, J. S. Shin and J. P. Sang, Korean J. Chem. Eng., 35(5), 1185 (2018).CrossRefGoogle Scholar
  23. 23.
    J. Cho and J. K. Jeon, Korean J. Chem. Eng., 23(1), 1 (2006).CrossRefGoogle Scholar
  24. 24.
    A.M. Fulgueras, J. Poudel and S.K. Dong, Korean J. Chem. Eng., 33(1), 1 (2016).CrossRefGoogle Scholar
  25. 25.
    Y. H. Kim, Korean J. Chem. Eng., 29(12), 1680 (2012).CrossRefGoogle Scholar
  26. 26.
    I. J. Esfahani, J. Rashidi and P. Ifaei, Korean J. Chem. Eng., 33(2), 351 (2016).CrossRefGoogle Scholar
  27. 27.
    H. Yoo, M. Binns and M. G. Jang, Korean J. Chem. Eng., 33(2), 405 (2016).CrossRefGoogle Scholar
  28. 28.
    D.M. Yang and X. L. Guo, Energy Conservation (2007).Google Scholar
  29. 29.
    J.R. Alcántara-Avila, H.A. Sillas-Delgado, J. G. Segovia-Hernández, F. I. Gómez-Castro and J.A. Cervantes-Jauregui, Comp. Chem. Eng., 85(93), 78 (2015).Google Scholar
  30. 30.
    C. Hua, X.G. Li and S.M. Xu, Chin. J. Chem. Eng., 15(2), 286 (2007).CrossRefGoogle Scholar
  31. 31.
    E.X. Lu, X. L. Li and Z. Wu, Chem. Eng., 74(78), 36 (2008).Google Scholar
  32. 32.
    W. L. Luyben, Distillation design and control using AspenTM simulation, Wiley-Interscience, New Jersey (2006).CrossRefGoogle Scholar
  33. 33.
    J. Fang, C. L. Li, H. H. Wang and J.D. Liu, Acta. Petrolei. Sinica, 27(129), 129 (2011).Google Scholar
  34. 34.
    X.X. Gao, Z.F. Ma and J.Q. Ma, Energy Technol., 2(3), 250 (2014).CrossRefGoogle Scholar
  35. 35.
    S. Hamidreza, Heat. Mass. Transfer, 51(10), 1393 (2015).CrossRefGoogle Scholar
  36. 36.
    I. L. Xingang, C. Lin and L. Wang, Front. Chem. Sci. Eng., 7(437), 446 (2013).Google Scholar
  37. 37.
    P. F. Soares, R. Zemp and M. Jobsen, Chem. Eng., 66(13), 2920 (2011).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Xiaoxin Gao
    • 1
    • 2
  • Xueming Yin
    • 2
  • Song Yang
    • 1
    • 2
  • Deming Yang
    • 1
    • 2
  1. 1.Jiangsu Key Laboratory of Advanced Catalytic Materials and TechnologyChangzhou UniversityChangzhouP. R. China
  2. 2.College of Petrochemical EngineeringChangzhou UniversityChangzhouP. R. China

Personalised recommendations