Advertisement

Study of effective parameters for the polarization characterization of PEMFCs sensitivity analysis and numerical simulation

  • Sara Barati
  • Mohsen Mehdipour Ghazi
  • Behnam Khoshandam
Research Papers
  • 4 Downloads

Abstract

A three-dimensional model of a HT-PEMFC was simulated using Comsol Multiphysics software. Sensitivity was analyzed by using the three-level Box-Behnken experimental design. The effect of independent variables on the fuel cell performance including air and hydrogen velocity, temperature and amount of phosphoric acid doping level (PAdop) on the membrane was investigated. The results showed that the PAdop is the most important variable. The simulation results showed that with the increasing of the PAdop from 2 to 16, the current density (at a voltage of 0.4 V) increased from 0.3 to 0.9A/cm2, which confirms the importance of the PAdop factor on the fuel cell performance.

Keywords

Design Expert Sensitivity Analysis Box-Behnken High Temperature PEM Fuel Cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Devrim, S. Erkan, N. Bac and I. Eroğlu, Int. J. Hydrogen Energy, 34, 3467 (2009).CrossRefGoogle Scholar
  2. 2.
    Q. Li, R. He, J. O. Jensen and N. J. Bjerrum, Chem. Mater., 15, 4896 (2003).CrossRefGoogle Scholar
  3. 3.
    D. Cheddie and N. Munroe, J. Power Sources, 156, 414 (2006).CrossRefGoogle Scholar
  4. 4.
    Z. Qi, C. He and A. Kaufman, J. Power Sources, 111, 239 (2002).CrossRefGoogle Scholar
  5. 5.
    O. Kongstein, T. Berning, B. Børresen, F. Seland and R. Tunold, Energy, 32, 418 (2007).CrossRefGoogle Scholar
  6. 6.
    D. Weng, J. Wainright, U. Landau and R. Savinell, J. Electrochem. Soc., 143, 1260 (1996).CrossRefGoogle Scholar
  7. 7.
    D. Ergun, Y. Devrim, N. Bac and I. Eroglu, J. Appl. Polym. Sci., 124 (2012).Google Scholar
  8. 8.
    S. Gant, A. Kelsey, K. McNally, H. Witlox and M. Bilio, J. of Loss Prevention in the Process Industries, 26, 792 (2013).CrossRefGoogle Scholar
  9. 9.
    M. Haghayegh, M. H. Eikani and S. Rowshanzamir, Int. J. Hydrogen Energy, 42, 21944 (2017).CrossRefGoogle Scholar
  10. 10.
    Y.-J. Sohn, S.-D. Yim, G.-G. Park, M. Kim, S.-W. Cha and K. Kim, Int. J. Hydrogen Energy, 42, 13226 (2017).CrossRefGoogle Scholar
  11. 11.
    R. B. Lakshmi, N. Harikrishnan and A. V. Juliet, Appl. Surf. Sci., 418, 99 (2017).CrossRefGoogle Scholar
  12. 12.
    S. Li and B. Sundén, Int. J. Hydrogen Energy, 42, 27323 (2017).CrossRefGoogle Scholar
  13. 13.
    R. Bradfield, G. Cairns and G. Wright, Technological Forecasting and Social Change, 100, 44 (2015).CrossRefGoogle Scholar
  14. 14.
    S.-J. Wang and S.-Y. Lee, Computational Statistics & Data Analysis, 23, 239 (1996).CrossRefGoogle Scholar
  15. 15.
    M. Hadzima-Nyarko, E. K. Nyarko and D. Morić, Expert Systems with Applications, 38, 13405 (2011).CrossRefGoogle Scholar
  16. 16.
    E. Zio, N. Pedroni and M. Carlo, Reliability Engineering & System Safety, 107, 90 (2012).CrossRefGoogle Scholar
  17. 17.
    J. Mousavi and M. Parvini, Int. J. Hydrogen Energy, 41, 5188 (2016).CrossRefGoogle Scholar
  18. 18.
    P. Chippar and H. Ju, Solid State Ionics, 225, 30 (2012).CrossRefGoogle Scholar
  19. 19.
    J. Lobato, P. Cañizares, M. A. Rodrigo, F. J. Pinar, E. Mena and D. Úbeda, Int. J. Hydrogen Energy, 35, 5510 (2010).CrossRefGoogle Scholar
  20. 20.
    R. O'hayre, S.-W. Cha, F. B. Prinz and W. Colella, Fuel cell fundamentals, Wiley (2016).CrossRefGoogle Scholar
  21. 21.
    T. E. Springer and S. Gottesfeld, Pseudo homogeneous catalyst layer model for polymer electrolyte fuel cell, Los Alamos National Lab., NM (United States) (1991).Google Scholar
  22. 22.
    D. Song, Q. Wang, Z. Liu, T. Navessin and S. Holdcroft, Electrochim. Acta, 50, 731 (2004).CrossRefGoogle Scholar
  23. 23.
    D. M. Bernardi and M. W. Verbrugge, J. Electrochem. Soc., 139, 2477 (1992).CrossRefGoogle Scholar
  24. 24.
    D. F. Cheddie and N. D. Munroe, Int. J. Hydrogen Energy, 32, 832 (2007).CrossRefGoogle Scholar
  25. 25.
    R. H. Myers, D. C. Montgomery, G. G. Vining, C. M. Borror and S. M. Kowalski, J. Quality Technol., 36, 53 (2004).CrossRefGoogle Scholar
  26. 26.
    M. Khajeh, J. Supercrit. Fluids, 55, 944 (2011).CrossRefGoogle Scholar
  27. 27.
    A. Kanaris, A. Mouza and S. Paras, Int. J. Thermal Sci., 48, 1184 (2009).CrossRefGoogle Scholar
  28. 28.
    J. G. Carton and A.-G. Olabi, Energy, 35, 2796 (2010).CrossRefGoogle Scholar
  29. 29.
    H.-M. Kim and K.-Y. Kim, Int. J. Heat and Mass Transfer, 47, 5159 (2004).CrossRefGoogle Scholar
  30. 30.
    B. Sezgin, D. G. Caglayan, Y. Devrim, T. Steenberg and I. Eroglu, Int. J. Hydrogen Energy, 41, 10001 (2016).CrossRefGoogle Scholar
  31. 31.
    M. Altan, Mater. Design, 31, 599 (2010).CrossRefGoogle Scholar
  32. 32.
    K. Yetilmezsoy, S. Demirel and R. J. Vanderbei, J. Hazard. Mater., 171, 551 (2009).CrossRefGoogle Scholar
  33. 33.
    H.-L. Liu, Y.-W. Lan and Y.-C. Cheng, Process Biochem., 39, 1953 (2004).CrossRefGoogle Scholar
  34. 34.
    K. Adinarayana and P. Ellaiah, J. Pharm. Pharm. Sci., 5, 272 (2002).Google Scholar
  35. 35.
    D. Wu, J. Zhou and Y. Li, Chem. Eng. Sci., 64, 198 (2009).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Sara Barati
    • 1
  • Mohsen Mehdipour Ghazi
    • 1
  • Behnam Khoshandam
    • 1
  1. 1.Department of Chemical, Petroleum and Gas EngineeringSemnan UniversitySemnanIran

Personalised recommendations