Korean Journal of Chemical Engineering

, Volume 36, Issue 1, pp 71–76 | Cite as

Continuous production of bioethanol using microalgal sugars extracted from Nannochloropsis gaditana

  • Ja Hyun Lee
  • Hee Uk Lee
  • Ju Hun Lee
  • Soo Kweon Lee
  • Hah Young Yoo
  • Chulhwan ParkEmail author
  • Seung Wook KimEmail author


We developed a continuous production process of bioethanol from sugars extracted from Nannochloropsis gaditana. To improve algal sugar production, the reaction conditions of acid-thermal hydrolysis were investigated based on five different types of acid and their concentrations (1-4%), and the loading ratio of solid/liquid (S/L). As a result, the maximum hydrolysis efficiency (92.82%) was achieved under 2% hydrochloric acid with 100 g/L biomass loading at 121 oC for 15 min. The hydrolysates obtained from N. gaditana were applied to the main medium of Bretthanomyces custersii H1-603 for bioethanol production. The maximum bioethanol production and yield by the microalgal hydrolysate were found to be 4.84 g/L and 0.37 g/g, respectively. In addition, the cell immobilization of B. custersii was carried out using sodium alginate, and the effect of the volume ratio of cell/sodium alginate on bioethanol productivity was investigated in a batch system. The optimal ratio was determined as 2 (v/v), and the immobilized cell beads were applied in the continuous stirred tank reactor (CSTR). Continuous ethanol production was performed using both free cells and immobilized cells at 1 L CSTR. In both groups, the maximum bioethanol production and yield were achieved at dilution rate of 0.04 h-1 (3.93 g/L and 0.3 g/g by free cell, and 3.68 g/L and 0.28 g/g by immobilized cell, respectively).


Bioethanol CSTR Fermentation Hydrolysis Nannochloropsis gaditana 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Neri, F. Passarini, D. Cespi, F. Zoffoli and I. Vassura, J. Clean Prod., 171, 1006 (2018).CrossRefGoogle Scholar
  2. 2.
    N. Phusunti, W. Phetwarotai and S. Tekasakul, Korean J. Chem. Eng., 35, 503 (2018).CrossRefGoogle Scholar
  3. 3.
    H.Y. Yoo, G. C. Pradeep, S. K. Lee, D. H. Park, S. S. Cho, Y. H. Choi and S.W. Kim, Biotechnol. J., 10, 1894 (2015).CrossRefGoogle Scholar
  4. 4.
    X. Yang, H. S. Choi, C. Park and S.W. Kim, Renew. Sust. Energy Rev., 49, 335 (2015).CrossRefGoogle Scholar
  5. 5.
    J. H. Lee, D. S. Kim, J. H. Yang, Y. Chun, H.Y. Yoo, S.O. Han, J. Lee, C. Park and S.W. Kim, Bioresour. Technol., 264, 387 (2018).CrossRefGoogle Scholar
  6. 6.
    W. G. Kidanu, P.T. Trang and H. H. Yoon, Biotechnol. Bioprocess Eng., 22, 612 (2017).CrossRefGoogle Scholar
  7. 7.
    J. Singh and S. Gu, Renew. Sust. Energy Rev., 14, 2596 (2010).CrossRefGoogle Scholar
  8. 8.
    J. Cheng, Z. Yang, J. Zhou and K. Cen, Korean J. Chem. Eng., 35, 498 (2018).CrossRefGoogle Scholar
  9. 9.
    M. Daroch, S. Geng and G. Wang, Appl. Energy, 102, 1371 (2013).CrossRefGoogle Scholar
  10. 10.
    N. Zhou, Y. Zhang, X. Gong, Q. Wang and Y. Ma, Bioresour. Technol., 118, 512 (2012).CrossRefGoogle Scholar
  11. 11.
    M. J. Scholz, T. L. Weiss, R. E. Jinkerson, J. Jing, R. Roth, U. Goodenough, M. C. Posewitz and H. G. Gerken, Eukaryot. Cell (2014), DOI:10.1128/EC.00183-14.Google Scholar
  12. 12.
    F. Monlau, C. Sambusiti, A. Barakat, M. Quéméneur, E. Trably, J. P. Steyer and H. Carrère, Biotechnol. Adv., 32, 934 (2014).CrossRefGoogle Scholar
  13. 13.
    D. I. Sánchez-Machado, J. López-Cervantes, J. López-Hernández and P. Paseiro-Losada, Food Chem., 85, 439 (2004).CrossRefGoogle Scholar
  14. 14.
    H.G. Lim, S.W. Seo and G.Y. Jung, Bioresour. Technol., 135, 564 (2013).CrossRefGoogle Scholar
  15. 15.
    H.M. Holden, I. Rayment and J. B. Thoden, J. Biol. Chem., 278, 43885 (2003).CrossRefGoogle Scholar
  16. 16.
    S.C. Rabelo, R.M. Filho and A.C. Costa, Appl. Biochem. Biotechnol., 153, 139 (2009).CrossRefGoogle Scholar
  17. 17.
    J.R. Miranda, P.C. Passarinho and L. Gouveia, Bioresour. Technol., 104, 342 (2012).CrossRefGoogle Scholar
  18. 18.
    J. H. Lee, D. S. Kim, J. H. Yang, H.Y. Yoo, S.O. Han, J. Lee, C. Park and S.W. Kim, J. Clean Prod., 187, 903 (2018).CrossRefGoogle Scholar
  19. 19.
    H.Y. Yoo, X. Yang, D.S. Kim, S.K. Lee, P. Lotrakul, S. Prasongsuk, H. Punnapayak and S.W. Kim, Biotechnol. Bioprocess Eng., 21, 733 (2016).CrossRefGoogle Scholar
  20. 20.
    H.Y. Yoo, J. H. Lee, D. S. Kim, J. H. Lee, S. K. Lee, S. J. Lee, C. Park and S.W. Kim, J. Ind. Eng. Chem., 51, 303 (2017).CrossRefGoogle Scholar
  21. 21.
    S. Montipó, I. Ballesteros, R.C. Fontana, S. Liu, A.F. Martins, M. Ballesteros and M. Camassola, Bioresour. Technol., 249, 1017 (2018).CrossRefGoogle Scholar
  22. 22.
    S.H. Ho, S.W. Huang, C.Y. Chen, T. Hasunuma, A. Kondo and J. S. Chang, Bioresour. Technol., 135, 191 (2013).CrossRefGoogle Scholar
  23. 23.
    H. Wang, C. Ji, S. Bi, P. Zhou, L. Chen and T. Liu, Bioresour. Technol., 172, 169 (2014).CrossRefGoogle Scholar
  24. 24.
    J. H. Park, J.Y. Hong, H. C. Jang, S. G. Oh, S. H. Kim, J. J. Yoon and Y. J. Kim, Bioresour. Technol., 108, 83 (2012).CrossRefGoogle Scholar
  25. 25.
    K. H. Lee, I. S. Choi, Y. G. Kim, D. J. Yang and H. J. Bae, Bioresour. Technol., 102, 8191 (2011).CrossRefGoogle Scholar
  26. 26.
    Y. Kourkoutas, A. Bekatorou, I. M. Banat, R. Marchant and A. A. Koutinas, Food Microbiol., 21, 377 (2004).CrossRefGoogle Scholar
  27. 27.
    Z. S. Ahmad and M. S. A. Munaim, Food Biosci., 21, 27 (2018).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Ja Hyun Lee
    • 1
  • Hee Uk Lee
    • 1
  • Ju Hun Lee
    • 1
  • Soo Kweon Lee
    • 1
  • Hah Young Yoo
    • 2
    • 3
  • Chulhwan Park
    • 2
    Email author
  • Seung Wook Kim
    • 1
    Email author
  1. 1.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea
  2. 2.Department of Chemical EngineeringKwangwoon UniversitySeoulKorea
  3. 3.Department of BiotechnologySangmyung UniversitySeoulKorea

Personalised recommendations