Korean Journal of Chemical Engineering

, Volume 36, Issue 1, pp 12–20 | Cite as

Design of a renewable energy system with battery and power-to-methanol unit

  • Riezqa Andika
  • Young KimEmail author
  • Choa Mun Yun
  • Seok Ho Yoon
  • Moonyong Lee
Process Systems Engineering, Process Safety


An energy storage system consisting of a battery and a power-to-methanol (PtM) unit was investigated to develop an energy storage system for renewable energy systems. A nonlinear programming model was established to optimize the energy storage system. The optimal installation capacities of the battery and power-to-methanol units were determined to minimize the cost of the energy system. The cost from a renewable energy system was assessed for four configurations, with or without energy storage units, of the battery and the power-to-methanol unit. The proposed model was applied to the modified electricity supply and demand based on published data. The results show that value-adding units, such as PtM, need be included to build a stable renewable energy system. This work will significantly contribute to the advancement of electricity supply and demand management and to the establishment of a nationwide policy for renewable energy storage.


Battery Energy Storage Electricity Supply and Demand Nonlinear Programming Power to Methanol Renewable Energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Sørensen, Int. J. Energy Res., 32(5), 436 (2008).CrossRefGoogle Scholar
  2. 2.
    I. Dincer, Int. J. Energy Res., 26(7), 567 (2002).CrossRefGoogle Scholar
  3. 3.
    L. Exarchakos, M. Leach and G. Exarchakos, Int. J. Energy Res., 33(1), 62 (2009).CrossRefGoogle Scholar
  4. 4.
    Y. Li, X. Wang and Y. Ding, Int. J. Energy Res., 37(6), 547 (2013).CrossRefGoogle Scholar
  5. 5.
    P. Dev and M. A. Martin, Energy Convers. Manage., 84, 122 (2015).CrossRefGoogle Scholar
  6. 6.
    A. Belderbos, A. Virag, W. D’haeseleer and E. Delarue, Energy Convers. Manage., 143, 137 (2017).CrossRefGoogle Scholar
  7. 7.
    E. Mirmoradi and H. Ghasemi, Int. T. Electr. Energy, 26(3), 525 (2016).Google Scholar
  8. 8.
    G. Pleßmann, M. Erdmann, M. Hlusiak and C. Breyer, Energy Proc., 46, 22 (2014).CrossRefGoogle Scholar
  9. 9.
    D. Bolton, People in Germany are now being paid to consume electricity, Retrieved from [accessed on 5 September 2017].Google Scholar
  10. 10.
    V. Uusitalo, S. Väisänen, E. Inkeri and R. Soukka, Energy Convers. Manage., 134, 125 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti and E. Tzimas, Appl. Energy, 161, 718 (2016).CrossRefGoogle Scholar
  12. 12.
    P. Ralon, M. Taylor, A. Ilas, H. Diaz-Bone and K.-P. Kairies, Electricity Storage and Renewables: Costs and Markets to 2030. IRENA 2017 [ ].Google Scholar
  13. 13.
    Black & Veatch. Cost and Performance Data for Power Generation Technologies. Black & Veatch 2012 [ ].
  14. 14.
    R. Andika, A. B. D. Nandiyanto, Z. A. Putra, M. R. Bilad, Y. Kim, C. M. Yun and M. Lee, Renew. Sust. Energy Rev., 95, 227 (2018).CrossRefGoogle Scholar
  15. 15.
    R. Bhandari, C. A. Trudewind and P. Zapp, J. Clean Prod., 85, 151 (2014).CrossRefGoogle Scholar
  16. 16.
    O. Borm, Steam Electrolysis as the Core Technology for Sector Coupling in the Energy Transition. In: International Conference on Electrolysis; June 12–15, 2017, Copenhagen.Google Scholar
  17. 17.
    M. Elsied, A. Oukaour, H. Gualous and R. Hassan, Energy, 84, 139 (2015).CrossRefGoogle Scholar
  18. 18.
    J. P. Fossati, A. Galarza, A. Martin-Villate and L. Fontan, Renewable Energy, 77, 539 (2015).CrossRefGoogle Scholar
  19. 19.
    A. C. Luna and J. C. Vasquez, IEEE Trans on Power Electronics, 32, 2769 (2017).CrossRefGoogle Scholar
  20. 20.
    GAMS, Solver Manuals. Retrieved from [accessed on 13 September 2017].
  21. 21.
    Super Methanol, Fundamentals of methanol synthesis. Retrieved from [accessed on 13 September 2017].
  22. 22.
    G. Bozzano and F. Manenti, Prog. Energy Combust., 56, 71 (2016).CrossRefGoogle Scholar
  23. 23.
    J. B. Hansen, Methanol Production Technology: Todays and future Renewable Solutions. In: Methanol Workshop, March 17, 2015, Lund [].Google Scholar
  24. 24.
    J. de Bucy, The potential of power-to-gas: Technology review and economic potential assessment. ENEA 2016 [].Google Scholar
  25. 25.
    M. Rivarolo, D. Belotti, L. Magistri and A. F. Massardo, Int. J. Hydrogen Energy, 41(4), 2105 (2016).CrossRefGoogle Scholar
  26. 26.
    D. Belotti, M. Rivarolo, L. Magistri and A. F. Massardo, J. CO2 Util, 21, 132 (2017).CrossRefGoogle Scholar
  27. 27.
    M. Rivarolo, D. Belotti, A. Mendieta and A. F. Massardo, Energy Convers. Manage., 79, 74 (2014).CrossRefGoogle Scholar
  28. 28.
    IESO (Independent Electricity System Operator). Generator Output by Fuel Type Hourly Report. Retrieved from[accessed 15 Jul 2017].
  29. 29.
    Korea Energy Agency. Renewable Portfolio Standards (RPS). Retrieved from [accessed 15 Jul 2017].
  30. 30.
    Korean Power Exchange. Retrieved from[accessed 15 Jul 2017].
  31. 31.
    J.-H. Ryu, Korean J. Chem. Eng., 35(2), 328 (2018).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Riezqa Andika
    • 1
  • Young Kim
    • 2
    • 4
    Email author
  • Choa Mun Yun
    • 3
  • Seok Ho Yoon
    • 2
    • 4
  • Moonyong Lee
    • 1
    • 3
  1. 1.School of Chemical EngineeringYeungnam UniversityGyeongsanKorea
  2. 2.Department of Thermal SystemsKorea Institute of Machinery & MaterialsDaejeonKorea
  3. 3.Sherpa Space Inc.DaejeonKorea
  4. 4.Plant Systems and MachineryUniversity of Science and TechnologyDaejeonKorea

Personalised recommendations