Korean Journal of Chemical Engineering

, Volume 36, Issue 1, pp 101–108 | Cite as

Adsorption and precipitation of anionic dye Reactive Red 120 from aqueous solution by aminopropyl functionalized magnesium phyllosilicate

  • Yong-Woon Kim
  • Jung-Hun Kim
  • Deok Hyun Moon
  • Hyun-Jae ShinEmail author
Separation Technology, Thermodynamics


Dye wastewater causing destruction in ecosystem from a variety of plants an operation needs various factors for environmental cleanup. To improve removal efficiency of dye wastewater, various adsorbents including clay and nonclay-related materials have been tried. The use of soluble aminopropyl functionalized magnesium phyllosilicate (Mg-AMP clay) as an adsorbent for the textile anionic dye Reactive Red 120 (RR 120) was examined thermodynamically and kinetically. The adsorption kinetics followed the pseudo-second-order and Langmuir isotherm equation fitted best models. A maximum amount of adsorption was determined to be 229.9 mg/g, which is one of the highest values studied so far. An Mg-AMP clay dosage of 10 mg/mL obtained from Langmuir model a maximum adsorption capacity of 229.94, 182.26 and 156.54 mg/g at 298.15, 308.15 and 318.15 K, respectively. Moreover the thermodynamic activation parameters such as enthalpy and entropy were determined. We suggest the removal mechanism of RR 120 using Mg-AMP clay by adsorption and precipitation.


Anionic Dyes Magnesium Phyllosilicate Clay Adsorption Precipitation Reactive Red 120 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_168_MOESM1_ESM.mp4 (14.2 mb)
Supplementary material, approximately 14.1 MB.


  1. 1.
    I. M. Banat, P. Nigam, D. Singh and R. Marchant, Bioresour. Technol., 58, 217 (1996).CrossRefGoogle Scholar
  2. 2.
    P. A. Carneiro, G. A. Umbuzeiro, D. P. Oliveira and M. V. B. Zanoni, J. Hazard. Mater., 174, 694 (2010).CrossRefGoogle Scholar
  3. 3.
    X.-Y. Yang and B. Al-Duri, Chem. Eng. J., 83, 15 (2001).CrossRefGoogle Scholar
  4. 4.
    N. F. Cardoso, E. C. Lima, B. Royer, M. V. Bach, G. L. Dotto, L. A. Pinto and T. Calvete, J. Hazard. Mater., 241, 146 (2012).CrossRefGoogle Scholar
  5. 5.
    R. Gong, M. Li, C. Yang, Y. Sun and J. Chen, J. Hazard. Mater., 121, 247 (2005).CrossRefGoogle Scholar
  6. 6.
    D. S. Brookstein, Dermatol. Clin., 27, 309 (2009).CrossRefGoogle Scholar
  7. 7.
    V. S. Houk, Mutat. Res. Rev. Genet. Toxicol., 277, 91 (1992).CrossRefGoogle Scholar
  8. 8.
    G. Crini, Bioresour. Technol., 97, 1061 (2006).CrossRefGoogle Scholar
  9. 9.
    G. Crini and P.-M. Badot, Prog. Polym. Sci., 33, 399 (2008).CrossRefGoogle Scholar
  10. 10.
    R. B. Venkata and C. A. Sastray, Indian J. Environ. Prot., 7, 363 (1987).Google Scholar
  11. 11.
    H. Momenzadeh, A. R. Tehrani-Bagha, A. Khosravi, K. Gharanjig and K. Holmberg, Desalination, 271, 225 (2011).CrossRefGoogle Scholar
  12. 12.
    M. Greluk and Z. Hubicki, Chem. Eng. Res. Des., 91, 1343 (2013).CrossRefGoogle Scholar
  13. 13.
    G. Absalan, M. Asadi, S. Kamran, L. Sheikhian and D. M. Goltz, J. Hazard. Mater., 192, 476 (2011).CrossRefGoogle Scholar
  14. 14.
    Y. Xue, H. Hou and S. Zhu, Chem. Eng. J., 147, 272 (2009).CrossRefGoogle Scholar
  15. 15.
    N. Abidi, E. Errais, J. Duplay, A. Berez, A. Jrad, G. Schäfer, M. Ghazi, K. Semhi and M. Trabelsi-Ayadi, J. Clean. Prod., 86, 432 (2015).CrossRefGoogle Scholar
  16. 16.
    E. Errais, J. Duplay, F. Darragi, I. M’Rabet, A. Aubert, F. Huber and G. Morvan, Desalination, 275, 74 (2011).CrossRefGoogle Scholar
  17. 17.
    S. Babel and T. A. Kurniawan, J. Hazard. Mater., 97, 219 (2003).CrossRefGoogle Scholar
  18. 18.
    H. A. Patel, R. S. Somani, H. C. Bajaj and R. V. Jasra, Bull. Mater. Sci., 29, 133 (2006).CrossRefGoogle Scholar
  19. 19.
    M. Okamoto, S. Morita, H. Taguchi, Y. H. Kim, T. Kotaka and H. Tateyama, Polymer, 41, 3887 (2000).CrossRefGoogle Scholar
  20. 20.
    A. J. Patil and S. Mann, J. Mater. Chem., 18, 4605 (2008).CrossRefGoogle Scholar
  21. 21.
    M. A. Melo Jr., F. J. B. E. Oliveira and C. Airoldi, Appl. Clay Sci., 42, 130 (2008).CrossRefGoogle Scholar
  22. 22.
    Y.-C. Lee, W.-K. Park and J.-W. Yang, J. Hazard. Mater., 190, 652 (2011).CrossRefGoogle Scholar
  23. 23.
    H.-K. Han, Y.-C. Lee, M.-Y. Lee, A. J. Patil and H.-J. Shin, ACS. Appl. Mater. Inter., 3, 2564 (2011).CrossRefGoogle Scholar
  24. 24.
    V. K. H. Bui, D. Park and Y.-C. Lee, Chem. Eng. J., 336, 757 (2018).CrossRefGoogle Scholar
  25. 25.
    A. J. Patil, E. Muthusamy and S. Mann, Angew. Chem. Int. Ed., 43, 4928 (2004).CrossRefGoogle Scholar
  26. 26.
    A. J. Patil, E. Muthusamy and S. Mann, J. Mater. Chem., 15, 3838 (2005).CrossRefGoogle Scholar
  27. 27.
    Y.-C. Lee, T.-H. Lee, H.-K. Han, W. J. Go, J.-W. Yang and ·H.-J. Shin, Photochem. Photobiol., 86, 520 (2010).CrossRefGoogle Scholar
  28. 28.
    I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).CrossRefGoogle Scholar
  29. 29.
    H. M. F. Freundlich, J. Phys. Chem., 57, 385 (1906).Google Scholar
  30. 30.
    D. S. Abrams and J. M. Prausnitz, AIChE J., 21, 116 (1975).CrossRefGoogle Scholar
  31. 31.
    S. Lagergren, Handlingar, 24, 1 (1898).Google Scholar
  32. 32.
    Y.-S. Ho and G. McKay, Process Biochem., 34, 451 (1999).CrossRefGoogle Scholar
  33. 33.
    Y.-C. Lee, E. J. Kim, J.-W. Yang and H.-J. Shin, J. Hazard. Mater., 192, 62 (2011).Google Scholar
  34. 34.
    Y.-C. Lee, W.-K. Park and J.-W. Yang, J. Hazard. Mater., 190, 652 (2011).CrossRefGoogle Scholar
  35. 35.
    K. Didehban, M. Hayasi and F. Kermajani, Korean J. Chem. Eng., 34, 1177 (2017).CrossRefGoogle Scholar
  36. 36.
    E. Errais, J. Duplay, M. Elhabiri, M. Khodja, R. Ocampo, R. Baltenweck-Guyot and F. Darragi, Colloid. Surface. A., 403, 69 (2012).CrossRefGoogle Scholar
  37. 37.
    L. B. De Paiva, A. R. Morales and F. R. V. Díaz, Appl. Clay Sci., 42, 8 (2008).CrossRefGoogle Scholar
  38. 38.
    C. A. Demarchi, M. Campos and C. A. Rodrigues, J. Environ. Chem. Eng., 1, 1350 (2013).CrossRefGoogle Scholar
  39. 39.
    G. Chandrasekaran, H.-K. Han, G.-J. Kim and H.-J. Shin, Appl. Clay Sci., 53, 729 (2011).CrossRefGoogle Scholar
  40. 40.
    A. J. Patil, M. Li and S. Mann, Nanoscale, 5, 7161 (2013).CrossRefGoogle Scholar
  41. 41.
    C. Viseras, P. Cerezo, R. Sanchez, I. Salcedo and C. Aguzzi, Appl. Clay Sci., 48, 291 (2010).CrossRefGoogle Scholar
  42. 42.
    Y.-C. Lee, E. J. Kim, H.-J. Shin, M. Choi and J.-W. Yang, J. Ind. Eng. Chem., 18, 871 (2012).CrossRefGoogle Scholar
  43. 43.
    A. J. Patil, E. Muthusamy, A. M. Seddon and S. Mann, Adv. Mater., 15, 1816 (2003).CrossRefGoogle Scholar
  44. 44.
    A. J. Patil, M. Li, E. Dujardin and S. Mann, Nano Lett., 7, 2660 (2007).CrossRefGoogle Scholar
  45. 45.
    S. L. Burkett, A. Press and S. Mann, Chem. Mater., 9, 1071 (1997).CrossRefGoogle Scholar
  46. 46.
    S. Mann, S. L. Burkett, S. A. Davis, C. E. Fowler, N. H. Mendelson, S. D. Sims, D. Walsh and N. T. Whilton, Chem. Mater., 9, 2300 (1997).CrossRefGoogle Scholar
  47. 47.
    Y.-C. Lee, J.-Y. Kim and H.-J. Shin, Sep. Sci. Technol., 48, 1093 (2013).CrossRefGoogle Scholar
  48. 48.
    Y.-C. Lee, B. Kim, W. Farooq, J. Chung, J.-I. Han, H.-J. Shin, S. H. Jeong, J.-Y. Park, J.-S. Lee and Y.-K. Oh, Bioresour. Technol., 132, 440 (2013).CrossRefGoogle Scholar
  49. 49.
    W. Farooq, Y.-C. Lee, J.-I. Han, C. H. Darpito, M. Choi and J.-W. Yang, Green Chem., 15, 749 (2013).CrossRefGoogle Scholar
  50. 50.
    A. Nejib, D. Joelle, A. Fadhila, G. Sophie and T.-A. Malika, Desalin. Water. Treat., 54, 1754 (2015).Google Scholar
  51. 51.
    A. Tabak, N. Baltas, B. Afsin, M. Emirik, B. Caglar and E. Eren, J. Chem. Technol. Biotechnol., 85, 1199 (2010).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Yong-Woon Kim
    • 1
  • Jung-Hun Kim
    • 1
  • Deok Hyun Moon
    • 2
  • Hyun-Jae Shin
    • 1
  1. 1.Department of Biochemical and Polymer EngineeringChosun UniversityGwangjuKorea
  2. 2.Department of Environmental EngineeringChosun UniversityGwangjuKorea

Personalised recommendations