Korean Journal of Chemical Engineering

, Volume 36, Issue 1, pp 56–62 | Cite as

Superior dye degradation using SnO2-ZnO hybrid heterostructure catalysts

  • Shama SeharEmail author
  • Iffat Naz
  • Irum Perveen
  • Safia Ahmed
Environmental Engineering


We investigated the efficiency of oxide based hierarchical heterostructure as adsorbent for the treatment of organic dyes, Methyl orange (MO) and Methylene Blue (MB), containing solution. Nanocrystals such as ZnO nanorods (at various temperatures of 30, 60 and 75 °C) and SnO2 nanoparticles were synthesized by electrodeposition method and hydrothermal approaches, respectively. SnO2-ZnO heterostructures were formed by spin coating SnO2 nanoparticles on ZnO nanorods matrix to form a heterostructured film. The surface morphologies and structural characterization of as-prepared heterostructures were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. While, absorption spectra of all samples were examined by UV-vis diffuse reflectance spectroscopy. The photocatalytic activities of as-prepared samples for organic dyes degradation were tested under UV light as model reaction. The SnO2-ZnO heterostructured photocatalyst showed superior activities than individual ZnO and SnO2 nanocrystals. This heightened behavior was attributed to its better charge separation capability and the slow charge recombination originating due to difference in energy values of conduction band edges of SnO2 and ZnO. The SnO2-ZnO heterostructure demonstrated better stability and recyclability up to five times, which is highly desirable for potential industrial applications including dye degradation and wastewater treatment systems.


Organic Dye Degradation Hydrothermal Approach Metal Oxide Heterostructures Photocatalysis Electrochemical Deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_159_MOESM1_ESM.pdf (138 kb)
Superior dye degradation using SnO2-ZnO hybrid heterostructure catalysts


  1. 1.
    M. S. Diaz-Cruz and D. Barcelo, Chemosphere, 72, 333 (2008).CrossRefGoogle Scholar
  2. 2.
    U. G. Akpan and B. H. Hameed, J. Hazard. Mater., 170, 520 (2009).CrossRefGoogle Scholar
  3. 3.
    H. Zhao, G. Zhang, S. Chong, N. Zhang and Y. Liu, Ultrason. Sonochem., 27, 474 (2015).CrossRefGoogle Scholar
  4. 4.
    R. Kumar, G. Kumar, M. S. Akhtar and A. Umar, J. Alloys Compd., 629, 167 (2015).CrossRefGoogle Scholar
  5. 5.
    N. B. Bokhale, S. D. Bomble, R. R. Dalbhanjan, D. D. Mahale, S. P. Hinge, B. S. Banerjee, A. V. Mohod and P. R. Gogate, Ultrason. Sonochem., 21, 1797 (2014).CrossRefGoogle Scholar
  6. 6.
    K. Rastogi, J. N. Sahu, B. C. Meikap and M. N. Biswas, J. Hazard. Mater., 158, 531 (2008).CrossRefGoogle Scholar
  7. 7.
    P. K. Gillman, J. Psychopharmacol., 25, 429 (2011).CrossRefGoogle Scholar
  8. 8.
    D. T. Sponza, Enzyme Microb. Technol., 31, 102 (2002).CrossRefGoogle Scholar
  9. 9.
    D. Ozer, G. Dursun and A. Ozer, J. Hazard. Mater., 144, 171 (2007).CrossRefGoogle Scholar
  10. 10.
    A. El Sikaily, A. Khaled, A. El Nemr and O. Abdelwahab, Chem. Ecol., 22, 149 (2006).CrossRefGoogle Scholar
  11. 11.
    M. Moradi, F. Ghanbari, M. Manshouri and K. A. Angali, Korean J. Chem. Eng., 33, 539 (2016).CrossRefGoogle Scholar
  12. 12.
    W. S. W. Ngah, L. C. Teong and M. A. K. M. Hanafiah, Carbohydr. Polym., 83, 1446 (2011).CrossRefGoogle Scholar
  13. 13.
    K. Singh and S. Arora, Crit. Rev. Environ. Sci. Technol., 41, 807 (2011).CrossRefGoogle Scholar
  14. 14.
    T. Warang, N. Patel, R. Fernandes, N. Bazzanella and A. Miotello, Appl. Catal. B Environ., 132–133, 204 (2013).CrossRefGoogle Scholar
  15. 15.
    H. Hung, F. H. Ling and M. R. Haffmann, Environ. Sci. Technol., 34, 1758 (2000).CrossRefGoogle Scholar
  16. 16.
    A. Hassani, R. D. C. Soltani, Murat Kıranşan, S. Karaca, C. Karaca and A. Khataee, Korean J. Chem. Eng., 33, 178 (2016).CrossRefGoogle Scholar
  17. 17.
    A. Hassani, M. Kiransan, R. D. C. Soltani, A. Khataee and S. Karaca, Turk. J. Chem., 39, 734 (2015).CrossRefGoogle Scholar
  18. 18.
    N. Modirshahla, M. A. Behnajady, R. Rahbarfam and A. Hassani, Clean (Weinh), 40, 298 (2012).Google Scholar
  19. 19.
    A. Hassani, P. Eghbali, A. Ekicibil and O. Metin, J. Magn. Magn. Mater., 456, 400 (2018).CrossRefGoogle Scholar
  20. 20.
    A. Hassani, G. Çelikdağ, P. Eghbali, M. Sevim, S. Karaca and O. Metin, Ultrason. Sonochem., 40, 841 (2018).CrossRefGoogle Scholar
  21. 21.
    A. Younis, S. Shirsath, B. Shabbir and S. Li, Nanoscale, 10, 18576 (2018).CrossRefGoogle Scholar
  22. 22.
    L. G. Devi and R. Kavitha, Appl. Catal. B., 140–141, 559 (2013).CrossRefGoogle Scholar
  23. 23.
    D. Y. R. Castanedo Perez, G. Torres Delgado and O. Zelaya Angel, J. Photochem. Photobiol., 235, 49 (2012).CrossRefGoogle Scholar
  24. 24.
    H. Uchiyama, R. Nagao and H. Kozuka, J. Alloys Compd., 554, 122 (2013).CrossRefGoogle Scholar
  25. 25.
    A. Hamrouni, H. Lachheb and A. Houas, Mater. Sci. Eng. B., 178, 1371 (2013).CrossRefGoogle Scholar
  26. 26.
    W. Tian, C. Zhang, T. Zhai, S. L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg and Y. Bando, Adv. Mater., 26, 3088 (2014).CrossRefGoogle Scholar
  27. 27.
    Z. Zhang, C. Shao, X. Li, L. Zhang, X. Hongmei, W. Changhua and Y. Liu, J. Phys. Chem. C., 114, 7920 (2010).CrossRefGoogle Scholar
  28. 28.
    C. Zhang, W. Tiabn, Z. Xu, X. Wang, J. Liu, S. L. Li, D. M. Tang, D. Liu, M. Liao, Y. Bando and D. Golberg, Nanoscale., 6, 8084 (2014).CrossRefGoogle Scholar
  29. 29.
    Y. U. Changlin, K. Yang, S. H. U. Qing, C. Y. J. Jimmy, C. A. O. Fangfang and L. I. Xin, Chin. J. Catal., 32, 555 (2011).CrossRefGoogle Scholar
  30. 30.
    G. Marcì, V. Augugliaro, M. J. López-Munõz, C. Martín, L. Palmisano, V. Rives, M. Schiavello, R. J. D. Tilley and A. M. Venezia, J. Phys. Chem. B., 105, 1026 (2001).CrossRefGoogle Scholar
  31. 31.
    C. Shifu, Z. Wei and L. Z. Sujuan, Appl. Surf. Sci., 255, 2478 (2008).CrossRefGoogle Scholar
  32. 32.
    S. Mathur and S. Barth, Small, 3, 2070 (2007).CrossRefGoogle Scholar
  33. 33.
    R. Ostermann, D. Li, Y. Yin, J. T. McCann and Y. Xia, Nano Lett., 6, 1297 (2006).CrossRefGoogle Scholar
  34. 34.
    N. Modirshahla, A. Hassani, M. A. Behnajady and R. Rahbarfam, Desalination, 271, 187 (2011).CrossRefGoogle Scholar
  35. 35.
    J. S. Lee, O. S. Kwon and J. Jang, J. Mater. Chem., 22, 14565 (2012).CrossRefGoogle Scholar
  36. 36.
    L. Zhang, L. Yin, C. Wang, N. Lun and Y. Qi, ACS Appl. Mater. Interfaces, 2, 1769 (2010).CrossRefGoogle Scholar
  37. 37.
    C. Cheng, B. Liu, H. Yang, W. Zhou, L. Sun, R. Chen, S. F. Yu, J. Zhang, H. Gong, H. Sun and H. J. Fan, ACS Nano, 3, 3069 (2009).CrossRefGoogle Scholar
  38. 38.
    W. H. Hui, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, J. C. Thomas, L. Hu, S. Fan and C. Yi, Nat. Nanotech., 8, 421 (2013).CrossRefGoogle Scholar
  39. 39.
    K. Saeed, G. Ali, I. Khan and H. Khan, J. Chem. Eng. Chem. Res., 2, 671 (2015).Google Scholar
  40. 40.
    S. Valizadeh, M. H. Rasoulifard and M. S. S. Dorraji, Korean J. Chem. Eng., 33, 481 (2016).CrossRefGoogle Scholar
  41. 41.
    S. Jing, A. Younis, D. Chu and S. Li, SAIMS Mater. Sci., 2, 28 (2015).Google Scholar
  42. 42.
    X. Feng, L. Yinong, X. Lili, X. Yan, D. Min and L. Yunfei, Mater. Res. Bull., 44, 1700 (2009).CrossRefGoogle Scholar
  43. 43.
    Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang and Y. Liu. J. Phys. Chem. C., 114, 7920 (2010).CrossRefGoogle Scholar
  44. 44.
    H. J. Ahn, H. C. Choi, K. W. Park, S. B. Kim and Y. E. Sung, J. Phys. Chem. B., 108, 9815 (2004).CrossRefGoogle Scholar
  45. 45.
    M. N. Islam, T. B. Ghosh, K. L. Chopra and H. N. Acharya, Thin Solid Films, 280, 20 (1996).CrossRefGoogle Scholar
  46. 46.
    C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prarie, MN (1979).Google Scholar
  47. 47.
    J. N. Kim, K. S. Shin, D. H. Kim, B. O. Park, N. K. Kim and S. H. Cho, Appl. Surf. Sci., 206, 119 (2003).CrossRefGoogle Scholar
  48. 48.
    S. A. Studenikin, N. Golego and M. Cocivera, J. Appl. Phys., 87, 2413 (2000).CrossRefGoogle Scholar
  49. 49.
    V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides, Cambridge Univ. Press, Cambridge, UK (1994).Google Scholar
  50. 50.
    R. Marsalek, APCBEE Procedia., 9, 13 (2014).CrossRefGoogle Scholar
  51. 51.
    R. J. Tayade, T. S. Sivakumar and H. C. Bajaj, Indus. Eng. Chem. Res., 48, 10262 (2009).CrossRefGoogle Scholar
  52. 52.
    A. Younis, D. Chu, Y. V. Kaneti and S. Li, Nanoscale, 8, 378 (2016).CrossRefGoogle Scholar
  53. 53.
    J. B. Joo, Q. Zhang, M. Dahl, I. Lee, J. Goebl, F. Zaera and Y. Yin, Ener. Environ. Sci., 5, 6321 (2012).CrossRefGoogle Scholar
  54. 54.
    H. Cheng, J. Wang, Y. Zhao and X. Han, RSC Adv., 4, 47031 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Shama Sehar
    • 1
    Email author
  • Iffat Naz
    • 2
  • Irum Perveen
    • 3
  • Safia Ahmed
    • 3
  1. 1.School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyAustralia
  2. 2.Department of Biochemistry, Deanship of Educational ServicesQassim UniversityBuraidahKingdom of Saudi Arabia
  3. 3.Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological SciencesQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations