Korean Journal of Chemical Engineering

, Volume 36, Issue 1, pp 136–145 | Cite as

Effects of electrode compression on the water droplet removal from proton exchange membrane fuel cells

  • Gholam Reza MolaeimaneshEmail author
  • Mohammad Hassan Shojaeefard
  • Mohammad Reza Moqaddari
Materials (Organic, Inorganic, Electronic, Thin Films)


Proton-exchange membrane (PEM) fuel cells are one of the main candidates for propulsion systems of modern electric vehicles. However, appropriate water management is crucial to performance. Cell compression can affect the performance and water management of PEM fuel cells. Although the influence of cell compression on the transport of continuous water flow through the porous electrodes has been investigated, the influence of cell compression on the droplet dynamic behavior through these electrodes is not investigated thoroughly. Employing a pore-scale simulation method such as lattice Boltzmann method (LBM) is an excellent means for such investigation. In this study, LBM was applied to investigate the influence of compression of gas diffusion layer (GDL) on the removal of a water droplet from an electrode of a cell with interdigitated flow field. During removal process the droplet dynamic movement through five different GDLs (one without compression and the other four with four different levels of compression) was depicted and analyzed. The results reveal that the droplet experiences a faster removal process when the GDL is compressed. However, more increasing of compression does not result in a faster removal process, which indicates the existence of an optimum compression level for which the fastest removal process occurs.


Compression Multiphase Flow Water Droplet Proton-exchange Membrane (PEM) Fuel Cell Gas Diffusion Layer (GDL) Lattice Boltzmann Method (LBM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ehsani, Y. Gao and A. Emadi, Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory and design, CRC Press, London (2012).Google Scholar
  2. 2.
    K. Hongthong, K. Pruksathorn, P. Piumsomboon and P. Sripakagorn, Korean J. Chem. Eng., 24, 612 (2007).CrossRefGoogle Scholar
  3. 3.
    T. Kim, H. Lee, W. Sim, J. Lee, S. Kim, T. Lim and K. Park, Korean J. Chem. Eng., 26, 1265 (2009).CrossRefGoogle Scholar
  4. 4.
    Fuel cell vehicles,, 2016 (accessed 3 January 2016).
  5. 5.
    D. J. Moon, J. W. Ryu, S. D. Lee and B. S. Ahn, Korean J. Chem. Eng., 19, 921 (2002).CrossRefGoogle Scholar
  6. 6.
    B. Nakrumpai, K. Pruksathorn and P. Piumsomboon, Korean J. Chem. Eng., 23, 570 (2006).CrossRefGoogle Scholar
  7. 7.
    W. Chen and F. Jiang, Int. J. Hydrogen Energy, 41, 8550 (2016).CrossRefGoogle Scholar
  8. 8.
    I. S. Han, S. K. Park and C. B. Chung, Korean J. Chem. Eng., 33, 3121 (2016).CrossRefGoogle Scholar
  9. 9.
    S. Park and B. N. Popov, Korean J. Chem. Eng., 31, 1384 (2014).CrossRefGoogle Scholar
  10. 10.
    S. Bhlapibul and K. Pruksathorn, Korean J. Chem. Eng., 25, 1226 (2008).CrossRefGoogle Scholar
  11. 11.
    M. H. Shojaeefard, G. R. Molaeimanesh, M. Nazemian and M. R. Moqaddari, Int. J. Hydrogen Energy, 41, 20276 (2016).CrossRefGoogle Scholar
  12. 12.
    M. F. Serincan and U. Pasaogullari, J. Power Sources, 196, 1314 (2011).CrossRefGoogle Scholar
  13. 13.
    A. Mahmoudi, A. Ramiar and Q. Esmaili, Energy Convers. Manag., 110, 78 (2016).CrossRefGoogle Scholar
  14. 14.
    K. Tüber, D. Pócza and C. Hebling, J. Power Sources, 124, 403 (2003).CrossRefGoogle Scholar
  15. 15.
    M. Mortazavi and K. Tajiri, J. Power Sources, 245, 236 (2014).CrossRefGoogle Scholar
  16. 16.
    C. S. Lee and S. C. Yi, Korean J. Chem. Eng., 21, 1153 (2004).CrossRefGoogle Scholar
  17. 17.
    P. P. Mukherjee, C.-Y. Wang, V. P. Schulz, Q. Kang, J. Becker and A. Wiegmann, ECS. Trans., 25, 1485 (2009).CrossRefGoogle Scholar
  18. 18.
    Z. Shi, X. Wang and L. Guessous, J. Fuel Cell. Sci. Technol., 7, 021012 (2010).CrossRefGoogle Scholar
  19. 19.
    Y. Wang and K. S. Chen, J. Electrochem. Soc., 158, B1292 (2011).Google Scholar
  20. 20.
    P. Chippar, O. Kyeongmin, K. Kang and H. Ju, Int. J. Hydrogen Energy, 37, 6326 (2012).CrossRefGoogle Scholar
  21. 21.
    T. Tranter, A. Burns, D. Ingham and M. Pourkashanian, Int. J. Hydrogen Energy, 40, 652 (2015).CrossRefGoogle Scholar
  22. 22.
    J. H. Nam and M. Kaviany, Int. J. Heat. Mass Transf., 46, 4595 (2003).CrossRefGoogle Scholar
  23. 23.
    F. Zhang, X. Yang and C. Wang, J. Electrochem. Soc., 153, A225 (2006).CrossRefGoogle Scholar
  24. 24.
    S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech., 30, 329 (1998).CrossRefGoogle Scholar
  25. 25.
    G. R. Molaeimanesh and M. H. Akbari, Korean J. Chem. Eng., 32, 397 (2015).CrossRefGoogle Scholar
  26. 26.
    G. R. Molaeimanesh, H. S. Googarchin and A. Q. Moqaddam, Int. J. Hydrogen Energy, 41, 22221 (2016).CrossRefGoogle Scholar
  27. 27.
    G. R. Molaeimanesh and M. H. Akbari, Int. J. Hydrogen Energy, 39, 8401 (2014).CrossRefGoogle Scholar
  28. 28.
    G. R. Molaeimanesh and M. H. Akbari, Korean J. Chem. Eng., 31, 598 (2014).CrossRefGoogle Scholar
  29. 29.
    L. Chen, H.-B. Luan, Y.-L. He and W.-Q. Tao, Int. J. Therm Sci., 51, 132 (2012).CrossRefGoogle Scholar
  30. 30.
    Y. B. Salah, Y. Tabe and T. Chikahisa, Energy Procedia, 28, 125 (2012).CrossRefGoogle Scholar
  31. 31.
    B. Han and H. Meng, J. Power Sources, 217, 268 (2012).CrossRefGoogle Scholar
  32. 32.
    B. Han, J. Yu and H. Meng, J. Power Sources, 202, 175 (2012).CrossRefGoogle Scholar
  33. 33.
    L. Hao and P. Cheng, J. Power Sources, 190, 435 (2009).CrossRefGoogle Scholar
  34. 34.
    P. L. Bhatnagar, E. P. Gross and M. Krook, Phys Rev., 94, 511 (1954).CrossRefGoogle Scholar
  35. 35.
    X. Shan and H. Chen, Phys Rev. E., 47, 1815 (1993).CrossRefGoogle Scholar
  36. 36.
    A. K. Gunstensen, D. H. Rothman, S. Zaleski and G. Zanetti, Phys. Rev. A., 43, 4320 (1991).CrossRefGoogle Scholar
  37. 37.
    M. R. Swift, W. R. Osborn and J. M. Yeomans, Phys. Rev. Lett., 75, 830 (1995).CrossRefGoogle Scholar
  38. 38.
    A. A. Mohamad, Lattice Boltzmann method: fundamentals and engineering applications with computer codes, Springer, New York (2011).CrossRefGoogle Scholar
  39. 39.
    M. C. Sukop and D. T. Thorne, Lattice Boltzmann modeling, an introduction for geoscientists and engineers, Springer, Heidelberg (2007).Google Scholar
  40. 40.
    P. Yuan and L. Schaefer, Phys. Fluids, 18, 042101 (2006).CrossRefGoogle Scholar
  41. 41.
    V. P. Schulz, J. Becker, A. Wiegmann, P. P. Mukherjee and C.-Y. Wang, J. Electrochem. Soc., 154, B419 (2007).Google Scholar
  42. 42.
    K. Schladitz, S. Peters, D. Reinel-Bitzer, A. Wiegmann and J. Ohser, Comput. Mater. Sci., 38, 56 (2006).CrossRefGoogle Scholar
  43. 43.
    Q. Zou and X. He, Phys. Fluids, 9, 1591 (1997).CrossRefGoogle Scholar
  44. 44.
    E. Kumbur, K. Sharp and M. Mench, J. Power Sources, 168, 356 (2007).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Gholam Reza Molaeimanesh
    • 1
    Email author
  • Mohammad Hassan Shojaeefard
    • 2
  • Mohammad Reza Moqaddari
    • 3
  1. 1.Research Laboratory of Automotive Fluids and Structures Analysis, School of Automotive EngineeringIran University of Science and TechnologyTehranIran
  2. 2.School of Mechanical EngineeringIran University of Science and TechnologyTehranIran
  3. 3.School of Automotive EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations