Korean Journal of Chemical Engineering

, Volume 36, Issue 1, pp 115–125 | Cite as

Enhanced photocatalytic activity of TiO2/graphene by tailoring oxidation degrees of graphene oxide for gaseous mercury removal

  • Yu Guan
  • Tao Hu
  • Jiang WuEmail author
  • Lili ZhaoEmail author
  • Fengguo TianEmail author
  • Weiguo Pan
  • Ping He
  • Xuemei Qi
  • Fangqin Li
  • Kai Xu
Materials (Organic, Inorganic, Electronic, Thin Films)


We used a simple method of graphene oxide (GO) preparation with different oxidation levels, and control the properties of the TiO2 nanocrystals by tuning the content and oxidation degree of GO to enhance the photocatalytic performance. During the hydrothermal reaction, reduction of GO, formation of TiO2 and chemical bonds between TiO2 and reduced graphene oxide (RGO) was achieved simultaneously. Characterization results showed that TiO2 properties such as crystalline grain and particle size could be tailored by the amount of functional groups, and that crystallinity was also controlled by GO degrees of oxidation. TiO2/RGO photocatalysts showed great efficiency of mercury oxidation, which reached 83.7% and 43.6% under UV and LED light irradiation, respectively. The effects of crystalline grain size and surface chemical properties on Hg0 removal under LED and UV light irradiation were analyzed. In addition, the properties of the photocatalysts before and after UV illumination were investigated, finding that part of Ti-OH on TiO2 surface transformed to Ti-O-Ti. In a nutshell, this work could provide a new insight into enhancing activity of photocatalysts and understanding the photocatalytic mechanism.


TiO2 Reduced Graphene Oxide Photocatalysis Chemical Bonds Elemental Mercury 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. H. Lamborg, C. R. Hammerschmidt, K. L. Bowman, G. J. Swarr, K. M. Munson, D. C. Ohnemus, P. J. Lam, L.-E. Heimbürger, M. J. Rijkenberg and M. A. Saito, Nature, 512, 65 (2014).CrossRefGoogle Scholar
  2. 2.
    D. A. Cristol, R. L. Brasso, A. M. Condon, R. E. Fovargue, S. L. Friedman, K. K. Hallinger, A. P. Monroe and A. E. White, Science, 320, 335 (2008).CrossRefGoogle Scholar
  3. 3.
    J. Qiu, Nature, 493, 144 (2013).CrossRefGoogle Scholar
  4. 4.
    J. Li, N. Yan, Z. Qu, S. Qiao, S. Yang, Y. Guo, P. Liu and J. Jia, Environ. Sci. Technol., 44, 426 (2010).CrossRefGoogle Scholar
  5. 5.
    H. Yang, Z. Xu, M. Fan, A. E. Bland and R. R. Judkins, J. Hazard. Mater., 146, 1 (2007).CrossRefGoogle Scholar
  6. 6.
    R. Leary and A. Westwood, Carbon, 49, 741 (2011).CrossRefGoogle Scholar
  7. 7.
    A. Fujishima, K. Hashimoto and T. Watanabe, Surf. Sci. Rep., 63, 515 (2008).CrossRefGoogle Scholar
  8. 8.
    K. Hashimoto, H. Irie and A. Fujishima, Jpn. J. Appl. Phys., 44, 8269 (2005).CrossRefGoogle Scholar
  9. 9.
    C. Xiaobo, Chinese J. Catal., 30, 839 (2009).CrossRefGoogle Scholar
  10. 10.
    X. Chen and S. S. Mao, Chem. Rev., 107, 2891 (2007).CrossRefGoogle Scholar
  11. 11.
    A. Heller, Accounts Chem. Res., 28, 503 (1995).CrossRefGoogle Scholar
  12. 12.
    Z. Zhang, C. Shao, L. Zhang, X. Li and Y. Liu, J. Colloid Interface Sci., 351, 57 (2010).CrossRefGoogle Scholar
  13. 13.
    M.-Z. Ge, S.-H. Li, J.-Y. Huang, K.-Q. Zhang, S. S. Al-Deyab and Y.-K. Lai, J. Mater. Chem. A, 3, 3491 (2015).CrossRefGoogle Scholar
  14. 14.
    Q. Zhang, J.-B. Joo, Z. Lu, M. Dahl, D. Q. Oliveira, M. Ye and Y. Yin, Nano Res., 4, 103 (2011).CrossRefGoogle Scholar
  15. 15.
    B. J. Ji, Q. Zhang, M. Dahl, I. Lee, J. Goebl, F. Zaera and Y. Yin, Energy Environ. Sci., 5, 6321 (2012).CrossRefGoogle Scholar
  16. 16.
    I. Robel, B. A. Bunker and P. V. Kamat, Adv. Mater., 17, 2458 (2005).CrossRefGoogle Scholar
  17. 17.
    A. K. Geim and K. S. Novoselov, Nature Mater., 6, 183 (2007).CrossRefGoogle Scholar
  18. 18.
    H. Wang, J. T. Robinson, G. Diankov and H. Dai, J. Am. Chem. Soc., 132, 3270 (2010).CrossRefGoogle Scholar
  19. 19.
    J. Zhang, Z. Zhu, Y. Tang and X. Feng, J. Mater. Chem. A, 1, 3752 (2013).CrossRefGoogle Scholar
  20. 20.
    K. Woan, G. Pyrgiotakis and W. Sigmund, Adv. Mater., 21, 2233 (2009).CrossRefGoogle Scholar
  21. 21.
    H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 22, 380 (2009).Google Scholar
  22. 22.
    C. H. Kim, B.-H. Kim and K. S. Yang, Carbon, 50, 2472 (2012).CrossRefGoogle Scholar
  23. 23.
    B. C. Brodie, Philos. T. R. Soc. B, 149, 249 (1859).CrossRefGoogle Scholar
  24. 24.
    L. Staudenmaier, Chem. Ges., 31, 1481 (1898).CrossRefGoogle Scholar
  25. 25.
    W. S. Hummers Jr. and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).CrossRefGoogle Scholar
  26. 26.
    C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu and Y. Feng, ACS Nano, 4, 6425 (2010).CrossRefGoogle Scholar
  27. 27.
    G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei and H. Tang, Carbon, 49, 2693 (2011).CrossRefGoogle Scholar
  28. 28.
    C. Bao, L. Song, W. Xing, B. Yuan, C. A. Wilkie, J. Huang, Y. Guo and Y. Hu, J. Mater. Chem., 22, 6088 (2012).CrossRefGoogle Scholar
  29. 29.
    D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, ACS Nano, 4, 4806 (2010).CrossRefGoogle Scholar
  30. 30.
    J. Wu, C. Li, X. Zhao, Q. Wu, X. Qi, X. Chen, T. Hu and Y. Cao, Appl. Catal. B: Environ., 176, 559 (2015).CrossRefGoogle Scholar
  31. 31.
    Q. Xiang, J. Yu and M. Jaroniec, Nanoscale, 3, 3670 (2011).CrossRefGoogle Scholar
  32. 32.
    A. J. Patil, J. L. Vickery, T. B. Scott and S. Mann, Adv. Mater., 21, 3159 (2009).CrossRefGoogle Scholar
  33. 33.
    S. Zhang, H. Song, P. Guo, J. Zhou and X. Chen, Carbon, 48, 4211 (2010).CrossRefGoogle Scholar
  34. 34.
    S. J. An, Y. Zhu, S. H. Lee, M. D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. An and R. S. Ruoff, J. Phys. Chem. Lett., 1, 1259 (2010).CrossRefGoogle Scholar
  35. 35.
    S. Lee, S. H. Eom, J. S. Chung and S. H. Hur, Chem. Eng. J., 233, 297 (2013).CrossRefGoogle Scholar
  36. 36.
    X. Yu, J. Liu, Y. Yu, S. Zuo and B. Li, Carbon, 68, 718 (2014).CrossRefGoogle Scholar
  37. 37.
    J. Zhong, F. Chen and J. Zhang, J. Phys. Chem. C, 114, 933 (2009).CrossRefGoogle Scholar
  38. 38.
    W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan and Z. Zou, Appl. Catal. B: Environ., 69, 138 (2007).CrossRefGoogle Scholar
  39. 39.
    S. Hu, F. Zhou, L. Wang and J. Zhang, Catal. Commun., 12, 794 (2011).CrossRefGoogle Scholar
  40. 40.
    J. Yu, J. Fan and B. Cheng, J. Power Sources, 196, 7891 (2011).CrossRefGoogle Scholar
  41. 41.
    J. Yu, T. Ma, G. Liu and B. Cheng, Dalton T., 40, 6635 (2011).CrossRefGoogle Scholar
  42. 42.
    J. Yu, T. Ma and S. Liu, Chem. Phys., 13, 3491 (2011).Google Scholar
  43. 43.
    Q. Xiang, J. Yu and M. Jaroniec, J. Phys. Chem. C, 115, 7355 (2011).CrossRefGoogle Scholar
  44. 44.
    W. Fan, Q. Lai, Q. Zhang and Y. Wang, J. Phys. Chem. C, 115, 10694 (2011).CrossRefGoogle Scholar
  45. 45.
    L. C. Sim, K. H. Leong, S. Ibrahim and P. Saravanan, J. Mater. Chem. A, 2, 5315 (2014).CrossRefGoogle Scholar
  46. 46.
    Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao and J. Ma, Carbon, 50, 4093 (2012).CrossRefGoogle Scholar
  47. 47.
    J. Lin, X. Liu, S. Zhu, Y. Liu and X. Chen, Nano Scale Res. Lett., 10, 1 (2015).CrossRefGoogle Scholar
  48. 48.
    K. Zhou, Y. Zhu, X. Yang, X. Jiang and C. L. New J. Chem., 35, 353 (2011).Google Scholar
  49. 49.
    D. Liang, C. Cui, H. Hu, Y. Wang, S. Xu, B. Ying, P. Li, B. Lu and H. Shen, J. Alloys Compd., 582, 236 (2014).CrossRefGoogle Scholar
  50. 50.
    C. Hou, J. Hazard. Mater., 205, 229 (2012).CrossRefGoogle Scholar
  51. 51.
    B. Li, Z. Zhao, F. Gao, X. Wang and J. Qiu, Appl. Catal. B: Environ., 147, 958 (2014).CrossRefGoogle Scholar
  52. 52.
    H. Irie, Y. Watanabe and K. Hashimoto, Chem. Lett., 32, 772 (2003).CrossRefGoogle Scholar
  53. 53.
    G. An, W. Ma, Z. Sun, Z. Liu, B. Han, S. Miao, Z. Miao and K. Ding, Carbon, 45, 1795 (2007).CrossRefGoogle Scholar
  54. 54.
    N. P. Zschoerper, V. Katzenmaier, U. Vohrer, M. Haupt, C. Oehr and T. Hirth. Carbon, 47, 2174 (2009).CrossRefGoogle Scholar
  55. 55.
    J. Zhong, F. Chen and J. Zhang, J Phys. Chem. C, 114, 933 (2009).CrossRefGoogle Scholar
  56. 56.
    E. M. Neville, M. J. Mattle, D. Loughrey, B. Rajesh, M. Rahman, J. M. D. Macelroy, J. A. Sullivan and K. R. Thampi, J. Phys. Chem. C, 116, 16511 (2012).CrossRefGoogle Scholar
  57. 57.
    D.-e. Gu, Y. Lu and B.-c. Yang, Chem. Commun., 21, 2453 (2008).CrossRefGoogle Scholar
  58. 58.
    H. Li, D. Wang, H. Fan, P. Wang, T. Jiang and T. Xie, J. Colloid Interface Sci., 354, 175 (2011).CrossRefGoogle Scholar
  59. 59.
    D. Zhao, G. Sheng, C. Chen and X. Wang, Appl. Catal. B: Environ., 111, 303 (2012).CrossRefGoogle Scholar
  60. 60.
    Q. Zhou, Y.-H. Zhong, X. Chen, J.-H. Liu, X.-J. Huang and Y.-C. Wu, J. Mater. Sci., 49, 1066 (2014).CrossRefGoogle Scholar
  61. 61.
    J. Wu, K. Xu, Q. Z. Liu, Z. Ji, C. H. Qu, X. M. Qi, H. Zhang, Y. Guan, P. He and L. J. Zhu, Appl. Catal. B: Environ., 232, 135 (2018).CrossRefGoogle Scholar
  62. 62.
    X. Zhou, J. Wu, Q. F. Li, T. Zeng, Z. Ji, P. He, W. G. Pan, X. M. Qi, C. Y. Wang and P. K. Liang, J. Catal., 355, 26 (2017).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.College of Energy and Mechanical EngineeringShanghai University of Electric PowerShanghaiChina
  2. 2.Huadian Weifang Power Generation Co., Ltd.WeifangChina
  3. 3.College of Environmental Sciences and EngineeringDonghua UniversityShanghaiChina

Personalised recommendations