Korean Journal of Chemical Engineering

, Volume 35, Issue 11, pp 2157–2163 | Cite as

Tubular reactor design for the oxidative dehydrogenation of butene using computational fluid dynamics (CFD) modeling

  • Joseph Albert Mendoza
  • Sungwon HwangEmail author
Process Systems Engineering, Process Safety


Catalytic reactors have been essential for chemical engineering process, and different designs of reactors in multi-scales have been previously studied. Computational fluid dynamics (CFD) utilized in reactor designs have been gaining interest due to its cost-effective advantage in designing the actual reactors before its construction. In this work, butadiene synthesis via oxidative dehydrogenation (ODH) of n-butene using tubular reactor was used as a case study in the CFD model. The effects of coolant and reactor diameter were investigated in assessing the reactor performance. Based on the results of the CFD model, the conversion and selectivity were 86.5% and 59.5% respectively in a fixed bed reactor under adiabatic condition. When coolants were used in a tubular reactor, reactor temperature profiles showed that solar salt had lower temperature gradients inside the reactor than the cooling water. Furthermore, higher conversion (90.9%) and selectivity (90.5%) were observed for solar salt as compared to the cooling water (88.4% for conversion and 86.3% for selectivity). Meanwhile, reducing the reactor diameter resulted in smaller temperature gradients with higher conversion and selectivity.


Catalysis Computer Modelling Heat Transfer Kinetics Reactor Design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-H. Park and C.-H. Shin, J. Ind. Eng. Chem., 21, 683 (2015).CrossRefGoogle Scholar
  2. 2.
    J.-H. Park, H. Noh, J. W. Park, K. H. Row, K. D. Jung and C.-H. Shin, Res. Chem. Intermed., 37, 1125 (2011).CrossRefGoogle Scholar
  3. 3.
    J. Rischard, R. Franz, C. Antinori and O. Deutschmann, AIChE J., 63, 43 (2017).CrossRefGoogle Scholar
  4. 4.
    H. Lee, J. C. Jung, H. Kim, Y.-M. Chung, T. J. Kim, S. J. Lee, S.-H. Oh, Y. S. Kim and I. K. Song, Catal. Commun., 9, 1137 (2008).CrossRefGoogle Scholar
  5. 5.
    E. Hong, J.-H. Park and C.-H. Shin, Catal. Surv. Asia, 20, 23 (2016).CrossRefGoogle Scholar
  6. 6.
    K. Huang, L. Wang, S. Lin, Y. Xu and D. Wu, J. Taiwan Inst. Chem. Eng., 63, 61 (2016).CrossRefGoogle Scholar
  7. 7.
    J.-H. Park and C.-H. Shin, Appl. Catal., A, 495, 1 (2015).CrossRefGoogle Scholar
  8. 8.
    W. Yan, Q. Y. Kouk, J. Luo, Y. Liu and A. Borgna, Catal. Commun., 46, 208 (2014).CrossRefGoogle Scholar
  9. 9.
    J. H. Zhang, Z. B. Wang, H. Zhao, Y. Y. Tian, H. H. Shan and C. H. Yang, Appl. Petrochem. Res., 5, 255 (2015).CrossRefGoogle Scholar
  10. 10.
    S. Park, Y. Lee, G. Kim and S. Hwang, Korean J. Chem. Eng., 33, 3417 (2016).CrossRefGoogle Scholar
  11. 11.
    T. Ren, M. K. Patel and K. Blok, Energy, 33, 817 (2008).Google Scholar
  12. 12.
    J. S. Sterrett and H. G. McIlvried, Ind. Eng. Chem. Process Des. Dev., 13, 54 (1974).CrossRefGoogle Scholar
  13. 13.
    E. V. Makshina, M. Dusselier, W. Janssens, J. Degreve, P. A. Jacobs and B. F. Sels, Chem. Soc. Rev., 43, 7917 (2014).CrossRefGoogle Scholar
  14. 14.
    W. Xingan and L. Huiqin, Ind. Eng. Chem. Res., 35, 2570 (1996).CrossRefGoogle Scholar
  15. 15.
    F. J. Dumez and G. F. Froment, Ind. Eng. Chem. Process Des. Dev., 15, 291 (1976).CrossRefGoogle Scholar
  16. 16.
    D. L. Trimm and D. S. Gabbay, Trans. Faraday Soc., 67, 2782 (1971).CrossRefGoogle Scholar
  17. 17.
    J.-H. Park and C.-H. Shin, Korean J. Chem. Eng., 33, 823 (2016).CrossRefGoogle Scholar
  18. 18.
    A. Heidari and S. H. Hashemabadi, J. Taiwan Inst. Chem. Eng., 45, 1389 (2014).CrossRefGoogle Scholar
  19. 19.
    E. J. Hukkanen, M. J. Rangitsch and P. M. Witt, Ind. Eng. Chem. Res., 52, 15437 (2013).CrossRefGoogle Scholar
  20. 20.
    H. Asadi-Saghandi and J. Karimi-Sabet, Korean J. Chem. Eng., 34, 1905 (2017).CrossRefGoogle Scholar
  21. 21.
    R. I. Singh, A. Brink and M. Hupa, Appl. Therm. Eng., 52, 585 (2013).CrossRefGoogle Scholar
  22. 22.
    L. Tian, G. Hu, W. Du and F. Qian, Can. J. Chem. Eng., 94, 2427 (2016).CrossRefGoogle Scholar
  23. 23.
    K. Huang, S. Lin, J. Wang and Z. Luo, J. Ind. Eng. Chem., 29, 172 (2015).CrossRefGoogle Scholar
  24. 24.
    J. T. Cornelissen, F. Taghipour, R. Escudié, N. Ellis and J. R. Grace, Chem. Eng. Sci., 62, 6334 (2007).CrossRefGoogle Scholar
  25. 25.
    X. Liu, S. Hu, Y. Jiang and J. Li, Chem. Eng. J., 278, 492 (2015).CrossRefGoogle Scholar
  26. 26.
    A. Bakshi, C. Altantzis, L. R. Glicksman and A. F. Ghoniem, Powder Technol., 316, 500 (2017).CrossRefGoogle Scholar
  27. 27.
    K. M. Wgialla, A. M. Helal and S. S. E. H. Elnashaie, Math. Comput. Model., 15, 17 (1991).CrossRefGoogle Scholar
  28. 28.
    Z. Zhai, X. Wang, R. Licht and A. T. Bell, J. Catal., 325, 87 (2015).CrossRefGoogle Scholar
  29. 29.
    R. I. Rothenberg and J. M. Smith, AIChE J., 12, 213 (1966).CrossRefGoogle Scholar
  30. 30.
    R. Serrano-López, J. Fradera and S. Cuesta-López, Chem. Eng. Process., 73, 87 (2013).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Graduate School of Chemistry and Chemical EngineeringInha UniversityIncheonKorea

Personalised recommendations