Korean Journal of Chemical Engineering

, Volume 36, Issue 1, pp 126–135 | Cite as

Nickel nanoparticles-doped rhodamine grafted carbon nanofibers as colorimetric probe: Naked eye detection and highly sensitive measurement of aqueous Cr3+ and Pb2+

  • Dinesh KumarEmail author
  • Neetu Talreja
Materials (Organic, Inorganic, Electronic, Thin Films)


Nickel nanoparticle (NiNPs)-doped carbon nanofiber (CNF) grafted with Rhodamine-B (RhB) dye (Ni-CNF-RhB), was prepared and utilized as a colorimetric probe for detection and measurements of chromium (Cr3+) and lead (Pb2+) metal ions in aqueous systems. An intense pink solution was obtained within 30 s on the exposure of the colorless Ni-CNF-RhB probe to the metal ions (Cr3+ and Pb2+) solution. Briefly, the NiNPs-doped carbon beads were synthesized and applied as a substrate to grow CNFs by chemical vapor deposition. The Ni-CNF-RhB colorimetric probe exhibited fast response and selective determination towards Cr3+ and Pb2+ over the 0.1-10 ppm concentration range of their respective solution pH. The developed probe also showed the pH-dependent colorimetric response, thereby, selectivity determination of the metal ions. The detection limits of the colorimetric probe against Cr3+ and Pb2+ are 203 and 132 nM, respectively. The binding ability of the RhB-dye was augmented by CNF and NiNPs, while the carbon beads provided support to CNF to help probe in detection application and its re-usability. The method to prepare the colorimetric probe is simple, novel, selective, and the probe can be efficiently used for the fast detection (naked eye) and measurements of toxic metal ions in aqueous systems.


Carbon Nanofibers Rhodamine Dye Colorimetric Sensor Toxic Metals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Bontideana, A. Mortaria, S. Letha, N. L. Brownb, U. Karlsonc, M. M. Larsenc, J. Vangronsveldd, P. Corbisiere and E. Csoregi, Environ. Pollut., 131, 255 (2004).CrossRefGoogle Scholar
  2. 2.
    F. Fu and Q. Wang, J. Environ. Manage., 92(3), 407 (2011).CrossRefGoogle Scholar
  3. 3.
    P. Kuban, R. Guchardi and P. C. Hauser, Trends Anal. Chem., 24, 192 (2005).CrossRefGoogle Scholar
  4. 4.
    H. N. Kim, W. X. Ren, J. S. Kim and J. Yoon, Chem. Soc. Rev., 41, 3210 (2012).CrossRefGoogle Scholar
  5. 5.
    C. R. Lohani, J. M. Kim, S. Y. Chung, J. Yoon and K. H. Lee, Analyst, 135, 2079 (2010).CrossRefGoogle Scholar
  6. 6.
    A. Larki, Spectrochim. Acta A., 173, 1 (2017).CrossRefGoogle Scholar
  7. 7.
    A. Halder and S. Bhattacharya, Spectrochim. Acta A., 99, 335 (2012).CrossRefGoogle Scholar
  8. 8.
    Z. Tian, S. Cui, C. Zheng and S. Pu, Spectrochim. Acta A., 173, 75 (2017).CrossRefGoogle Scholar
  9. 9.
    G. Li, L. Zhang, Z. Li and W. Zhang, J. Hazard. Mater., 177, 983 (2010).CrossRefGoogle Scholar
  10. 10.
    V. H. C. Liao, M. T. Chien, Y. Y. Tseng and K. L. Ou, Environ. Pollut., 142, 17 (2006).CrossRefGoogle Scholar
  11. 11.
    K. Farhadia, M. Forougha, R. Molaeia, S. Hajizadeha and A. Rafipour, Sensor Actuat B-Chem., 161, 880 (2012).CrossRefGoogle Scholar
  12. 12.
    K. Saha, S. S. Agasti, C. Kim, X. Li and V. M. Rotello, Chem. Rev., 112, 2739 (2012).CrossRefGoogle Scholar
  13. 13.
    H. Y. Chang, T. M. Hsiung, Y. F. Huang and C. C. Huang, Environ. Sci. Technol., 45, 1534 (2011).CrossRefGoogle Scholar
  14. 14.
    H. E. Kaoutit, P. Estévez, S. Ibeas, F. García, F. Serna, F. B. Benabdelouahab and J. M. García, Dyes Pigm., 96, 414 (2103).CrossRefGoogle Scholar
  15. 15.
    A. Liu, L. Yang, Z. Zhang, Z. Zhang and D. Xu, Dyes Pigm., 99, 472 (2013).CrossRefGoogle Scholar
  16. 16.
    X. Zhang, Y. Shiraishi and T. Hirai, Tetrahedron Lett., 48, 5455 (2007).CrossRefGoogle Scholar
  17. 17.
    O. Sunnapu, N. G. Kotla, B. Maddiboyina, S. Singaravadivel and G. Sivaraman, RSC Adv., 6, 656 (2016).Google Scholar
  18. 18.
    Z. Tang, X. L. Ding, Y. Liu, Z. M. Zhao and B. X. Zhao, RSC Adv., 5, 99664 (2015).Google Scholar
  19. 19.
    S. Xiao, M. Shen, R. Guo, Q. Huang, S. Wang and X. Shi, J. Mater Chem., 20, 5700 (2010).CrossRefGoogle Scholar
  20. 20.
    M. Bikshapathi, S. Mandal, G. N. Mathur, A. Sharma and N. Verma, Ind. Eng. Chem. Res., 50, 13092 (2011).CrossRefGoogle Scholar
  21. 21.
    A. Sharma, N. Verma, A. Sharma, D. Deva and N. Sankararamakrishnan, Chem. Eng. Sci., 65, 3591 (2010).CrossRefGoogle Scholar
  22. 22.
    R. Saraswat, N. Talreja, D. Deva, N. Sankararamakrishnan, A. Sharma and N. Verma, Chem. Eng. J., 197, 250 (2012).CrossRefGoogle Scholar
  23. 23.
    A. Ahmad, K. Kern and K. Balasubramanian, ChemPhysChem., 10, 905 (2009).CrossRefGoogle Scholar
  24. 24.
    G. Aragay, J. Pons and A. Merkoc, J. Mater. Chem., 21, 4326 (2011).CrossRefGoogle Scholar
  25. 25.
    V. Kumar, N. Talreja, D. Deva, N. Sankararamakrishnan, A. Sharma and N. Verma, Desalination, 282, 27 (2011).CrossRefGoogle Scholar
  26. 26.
    N. Talreja, D. Kumar and N. Verma, Clean-Soil, Air, Water, 44, 1 (2016).CrossRefGoogle Scholar
  27. 27.
    N. Talreja, D. Kumar and N. Verma, J. Water Process Eng., 3, 34 (2014).CrossRefGoogle Scholar
  28. 28.
    P. Khare, N. Talreja, D. Deva, A. Sharma and N. Verma, Chem. Eng. J., 229, 72 (2013).CrossRefGoogle Scholar
  29. 29.
    R. Zhang, M. Hummelga, G. Lv and H. k. Olin, Carbon, 49, 1126 (2011).CrossRefGoogle Scholar
  30. 30.
    H. Qiao, Z. Wei, H. Yang, L. Zhu and X. Yan, J. Nanomater, 2009, 795928, 5 (2009).Google Scholar
  31. 31.
    L. K. Kumawat, N. Mergu, M. Asif and V. K. Gupta, Sens. Actuator, B, 231, 847 (2016).CrossRefGoogle Scholar
  32. 32.
    H. Zhang, Q. Liu, T. Wang, Z. Yun, G. Li, J. Liu and G. Jiang, Anal. Chim. Acta, 770, 140 (2013).CrossRefGoogle Scholar
  33. 33.
    J. Abolhasani, J. Hassanzadeh and E. S. Jalali, Int. Nano Lett., 4, 65 (2014).CrossRefGoogle Scholar
  34. 34.
    E. M. Rajeshwari, N. Chandrasekaran and A. Mukherjee, Anal. Method, 5, 6211 (2013).CrossRefGoogle Scholar
  35. 35.
    X. Wang, Y. Wei, S. Wang and L. Chen, Colloid Surf., A: Physicochem. Eng. Aspects, 472, 57 (2015).CrossRefGoogle Scholar
  36. 36.
    A. R. Ferhan, L. Guo, X. Zhou, P. Chen, S. Hong and D. M. Kim, Anal. Chem., 85, 4094 (2013).CrossRefGoogle Scholar
  37. 37.
    H. Wei, B. Li, J. Li, S. Dong and E. Wang, Nanotechnology, 19(9): 095501 (2008).Google Scholar
  38. 38.
    N. Ding, Q. Cao, H. Zhao, Y. Yang, L. Zeng, Y. He, K. Xiang and G. Wang, Sensors, 10, 11144 (2010).CrossRefGoogle Scholar
  39. 39.
    T. Li, E. Wang and S. Dong, Anal. Chem., 82, 1515 (2010).CrossRefGoogle Scholar
  40. 40.
    H. Kuang, C. Xing, C. Hao, L. Liu, L. Wang and C. Xu, Sensors, 13, 4214 (2013).CrossRefGoogle Scholar
  41. 41.
    M. Beija, C. A. M. Afonso and J. M. G. Martinho, Chem. Soc. Rev., 38, 2410 (2009).CrossRefGoogle Scholar
  42. 42.
    A. Sahana, A. Banerjee, S. Lohar, B. Sarkar, S. K. Mukhopadhyay and D. Das, Inorg. Chem., 52, 3627 (2103).CrossRefGoogle Scholar
  43. 43.
    N. H. Kalwar, Sirajuddin, S. T. H. Sherazi, A. R. Khaskheli, K. R. Hallam, T. B. Scott, Z. A. Tagar, S. S. Hassana and R. A. Soomro, Appl. Catal. Gen., 453, 54 (2013).CrossRefGoogle Scholar
  44. 44.
    N. H. Kalwar, Sirajuddin, R. Z. Soomro, S. T. S. Hussain, K. R. Hallam and A. R. Khaskheli, Int. J. Metal., 2014, 1 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.School of Chemical SciencesCentral University of GujratGandhinagarIndia
  2. 2.Center for Environmental Science and EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations