Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 11, pp 2150–2156 | Cite as

Optimization of compression ratio in closed-loop CO2 liquefaction process

  • Taekyoon Park
  • Hyungyeol Kwak
  • Yeonsoo Kim
  • Jong Min Lee
Process Systems Engineering, Process Safety
  • 59 Downloads

Abstract

We suggest a systematic method for obtaining the optimal compression ratio in the multi-stage closed-loop compression process of carbon dioxide. Instead of adopting the compression ratio of 3 to 4 by convention, we propose a novel approach based on mathematical analysis and simulation. The mathematical analysis prescribes that the geometric mean is a better initial value than the existing empirical value in identifying the optimal compression ratio. In addition, the optimization problem considers the initial installation cost as well as the energy required for the operation. We find that it is best to use the fifth stage in the general closed-loop type carbon dioxide multi-stage compression process.

Keywords

Carbon Capture Closed-loop Compression Compression Ratio Multi-stage Compression Geometric Mean 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. D. Seider, J. D. Seader, D. R. Lewin and S. Widagdo, Product and process design principles: Synthesis, analysis and design, Wiley, 3rd Ed. (2008).Google Scholar
  2. 2.
    N. V. S. N. Murthy Konda, G. P. Rangaiah and D. K. H. Lim, Ind. Eng. Chem. Res., 45(17), 5955 (2006).CrossRefGoogle Scholar
  3. 3.
    W. L. Luyben, Ind. Eng. Chem. Res., 50(24), 13984 (2011).CrossRefGoogle Scholar
  4. 4.
    U. Lee, S. Yang, Y. S. Jeong, Y. Lim, C. S. Lee and C. Han, Ind. Eng. Chem. Res., 51(46), 15122 (2012).CrossRefGoogle Scholar
  5. 5.
    S. Posch and M. Haider, Fuel, 101, 254 (2012).CrossRefGoogle Scholar
  6. 6.
    K. T. Leperi, R. Q. Snurr and F. You, Ind. Eng. Chem. Res., 55(12), 3338 (2016).CrossRefGoogle Scholar
  7. 7.
    S. G. Lee, G. B. Choi and J. M. Lee, Ind. Eng. Chem. Res., 54(51), 12855 (2015).CrossRefGoogle Scholar
  8. 8.
    A. Aspelund, M. J. Mølnvik and G. D. Koeijer, Chem. Eng. Res. Design, 84(9), 847 (2006).CrossRefGoogle Scholar
  9. 9.
    T. Park, S. G. Lee, S. H. Kim, U. Lee, C. Han and J. M. Lee, Int. J. Greenhouse Gas Control, 46, 271 (2016).CrossRefGoogle Scholar
  10. 10.
    S. H. Jeon and M. S. Kim, Appl. Therm. Eng., 82, 360 (2015).CrossRefGoogle Scholar
  11. 11.
    J. Kotowicz, M. Brzęczek and M. Job, Int. J. Global Warming, 12(2), 164 (2017).CrossRefGoogle Scholar
  12. 12.
    J. Moore and M. G. Nored, ASME Turbo Expo: Power for Land, Sea, and Air, 7, 645 (2008).Google Scholar
  13. 13.
    M. Moshfeghian, Variation of Ideal Gas Heat Capacity Ratio with Temperature and Relative Density (Tip of the Month), John M. Campbell & Co., Norman, OK, U. S. A. (2013).Google Scholar
  14. 14.
    J. M. Douglas, Conceptual Design of Chemical Processes, McGraw-Hill (1988).Google Scholar
  15. 15.
    CEPCI June 2017 Issue, SCRIBD, https://doi.org/www.scribd.com/document/352561651/CEPCI-June2017-Issue, Accessed 11 Dec. 2017.

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Taekyoon Park
    • 1
  • Hyungyeol Kwak
    • 1
  • Yeonsoo Kim
    • 1
  • Jong Min Lee
    • 1
  1. 1.School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulKorea

Personalised recommendations