Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 9, pp 1800–1806 | Cite as

Mass transfer enhancement factor for chemical absorption of carbon dioxide into sodium metaborate solution

  • Duygu Uysal Zıraman
  • Özkan Murat Doğan
  • Bekir Zühtü Uysal
Transport Phenomena
  • 40 Downloads

Abstract

Hydrogen is getting increasing attention as a medium for energy storage, and sodium borohydride is accepted as a suitable carrier for hydrogen. The main product of the process by means of which hydrogen is produced from sodium borohydride is sodium metaborate. Our aim was to find an alternative use for sodium metaborate and specifically investigating the feasibility to use it for carbon dioxide capture from flue gases. The products of this chemical absorption are sodium carbonate, sodium bicarbonate and boric acid, all of which are industrially important chemicals. A bubble column was used in the experiments. Oxygen desorption technique was employed to determine the liquid side physical mass transfer coefficient. Chemical mass transfer coefficient was determined by absorption of carbon dioxide from its mixture with nitrogen into sodium metaborate solution. Enhancement factor was then calculated and a correlation was developed for it.

Keywords

Carbon Dioxide Absorption with Chemical Reaction Sodium Metaborate Bubble Column Mass Transfer Enhancement Factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_100_MOESM1_ESM.pdf (65 kb)
Mass transfer enhancement factor for chemical absorption of carbon dioxide into sodium metaborate solution

References

  1. 1.
    G. F Versteeg, L. A. J. Van Dijck and W. P. M. Van Swaaij, Chem. Eng. Commun., 144, 113 (1996).CrossRefGoogle Scholar
  2. 2.
    P. S. Kumar, J. A. Hogendoorn, G. F. Versteeg and P. H. M. Feron, AIChE J., 49, 203 (2003).CrossRefGoogle Scholar
  3. 3.
    R. Dugas and G. Rochelle, Energy Procedia, 1, 1163 (2009).CrossRefGoogle Scholar
  4. 4.
    M. Edali, A. Aboudheir and R. Idem, Int. J. Greenhouse Gas Control, 3, 550 (2009).CrossRefGoogle Scholar
  5. 5.
    E. S. Hamborg, Carbon dioxide removal processes by alkanolamines in aqueous organic solvents, Ph. D. Thesis, University of Groningen, Enschede (2011).Google Scholar
  6. 6.
    J. H. Meldon and M. A. Morales-Cabrera, Chem. Eng. J., 171, 753 (2011).CrossRefGoogle Scholar
  7. 7.
    A. L. Kohl and R. Nielsen, Gas Purification, 5th Ed., Gulf Publishing Co., Houston (1997).Google Scholar
  8. 8.
    U. E. Aronu, H. F. Svendsen, K. A. Hoff and O. Juliussen, Energy Procedia, 1, 1051 (2009).CrossRefGoogle Scholar
  9. 9.
    U. E. Aronu, H. F. Svendsen and K. A. Hoff, Int. J. Greenhouse Gas Control, 4, 771 (2010).CrossRefGoogle Scholar
  10. 10.
    G. S. Goff and G. T. Rochell, Ind. Eng. Chem. Res., 43, 6400 (2004).CrossRefGoogle Scholar
  11. 11.
    A. F. Portugal, P. W. J. Derks, G. F. Versteeg, F. D. Magalhães and A. Mendes, Chem. Eng. Sci., 62, 6534 (2007).CrossRefGoogle Scholar
  12. 12.
    P. M. M. Blauwhoff, G. F. Versteeg and W. P. M. Van Swaaij, Chem. Eng. Sci., 38, 1411 (1983).CrossRefGoogle Scholar
  13. 13.
    J. T. Yeh, K. P. Resnik, K. Rygle and H. W. Pennline, Fuel Process. Technol., 86, 1533 (2005).CrossRefGoogle Scholar
  14. 14.
    P. W. J. Derks and G. F. Versteeg, Energy Procedia, 1, 1139 (2009).CrossRefGoogle Scholar
  15. 15.
    V. Telikapelli, F. Kozak, J. F. Leandri, B. Sherrick, J. Black, D. Muraskin, M. Cage, M. Hammond and G. Spitznogle, CCS with the Alstom chilled ammonia process development program-field pilot results. Presented at Greenhouse Gas Technology 10 (GHGT10), Amsterdam (2010).Google Scholar
  16. 16.
    V. Darde, W. J. M. Van Well, P. L. Fosboel, E. H. Stenby and K. Thomsen, Int. J. Greenhouse Gas Control, 5, 1149 (2011).CrossRefGoogle Scholar
  17. 17.
    J. Liu, S. Wang, G. Qi, B. Zhao and C. Chen, Energy Procedia, 4, 525 (2011).CrossRefGoogle Scholar
  18. 18.
    D. Uysal, O. M. Dogan and B. Z. Uysal, Int. J. Chem. Kinet., 49, 377 (2017).CrossRefGoogle Scholar
  19. 19.
    M. T. Ityokumbul, N. Kosaric and W. Bulani, Chem. Eng. J., 53, 167 (1994).Google Scholar
  20. 20.
    B. Haut, V. Halloin, T. Cartage and A. Cockx, Chem. Eng. Sci., 59, 5687 (2004).CrossRefGoogle Scholar
  21. 21.
    N. Kantarci, F. Borak and K. O. Ulgen, Process Biochem., 40, 2263 (2005).CrossRefGoogle Scholar
  22. 22.
    H. A. Jakobsen, I. Bourg, K. W. Hjarbo and H. F. Svendsen, Parallel Computational Fluid Dynamics-Trends and Applications, Elsevier, New York (2001).Google Scholar
  23. 23.
    H. Dhaouadi, S. Poncin, J. M. Hornut and N. Midoux, Chem. Eng. Process. Process Intensif., 47, 548 (2008).CrossRefGoogle Scholar
  24. 24.
    E. Álvarez, D. Gómez-Díaz, J. M. Navaza and B. Sanjurjo, Chem. Eng. J., 137, 251 (2008).CrossRefGoogle Scholar
  25. 25.
    P. Harriot, Chemical Reactor Design, Marcel Dekker, New York (2002).CrossRefGoogle Scholar
  26. 26.
    S. Degaleesan, M. Dudukovic and Y. Pan, AIChE J., 47, 1913 (2001).CrossRefGoogle Scholar
  27. 27.
    C. L. Hyndman, F. Larachi and C. Guy, Chem. Eng. Sci., 52, 63 (1997).CrossRefGoogle Scholar
  28. 28.
    H. F. Bach and T. Pilhofer, Ger. Chem. Eng., 1, 270 (1978).Google Scholar
  29. 29.
    U. Oels, J. Lucke, R. Buchholz and K. Schugerl, Ger. Chem. Eng., 1, 115 (1978).Google Scholar
  30. 30.
    R. Krishna, P. M. Wilkinson and L. L. Van Dierendonck, Chem. Eng. Sci., 46, 2491 (1991).CrossRefGoogle Scholar
  31. 31.
    F. Yamashita and H. Inoue, J. Chem. Eng. Jpn., 8, 444 (1975).CrossRefGoogle Scholar
  32. 32.
    R. M. Adams and R. M. Boron, Metallo-boron Compounds and Boranes, Wiley, USA (1964).Google Scholar
  33. 33.
    J. O. Edwards, G. C. Morrison, V. F. Ross and J. W. Schultz, J. Am. Chem. Soc., 77, 266 (1955).CrossRefGoogle Scholar
  34. 34.
    W. D. Deckwer, Y. Louisi, A. Zaidi and M. Ralek, Ind. Eng. Chem. Process Des. Dev., 19, 699 (1980).CrossRefGoogle Scholar
  35. 35.
    R. H. Perry and D. W. Green, Perry’s Chemical Engineers’ Handbook, 8th Ed., McGraw Hill, New York (2008).Google Scholar
  36. 36.
    A. H. G. Cents, F. T. de Bruijn, D. W. F. Brilman and G. F. Versteeg, Chem. Eng. Sci., 60, 5809 (2005).CrossRefGoogle Scholar
  37. 37.
    P. C. Chen, W. Shi, R. Du and V. Chen, Ind. Eng. Chem. Res., 47, 6336 (2008).CrossRefGoogle Scholar
  38. 38.
    L. S. Fan, Gas-Liquid-Solid Fluidization Engineering, Butterworths, New York (1989).Google Scholar
  39. 39.
    Y. T. Shah, B. G. Kelkar, S. P. Godbole and W. D. Deckwer, AIChE J., 28, 353 (1982).CrossRefGoogle Scholar
  40. 40.
    J. B. Joshi and M. M. Sharma, Trans. Inst. Chem. Eng., 57, 244 (1979).Google Scholar
  41. 41.
    Y. Kawase and M. Moo-Young, Chem. Eng. Res. Des., 65, 121 (1987).Google Scholar
  42. 42.
    X. Luo, D. J. Lee, R. Lau, G. Yang and L. S. Fan, Chem. Eng. Process, 45, 665 (1999).Google Scholar
  43. 43.
    P. Zehner and M. Kraume, Bubble Columns in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley VCH Verlag GmbH &Co. KGaA, Weinheim (2000).Google Scholar
  44. 44.
    E. Sada, H. Kumazawa, C. Lee and N. Fujiwara, Ind. Chem. Eng. Process Des. Dev., 24, 255 (1985).CrossRefGoogle Scholar
  45. 45.
    S. Weisenberg and A. Schumpe, AIChE J., 42, 298 (1996).CrossRefGoogle Scholar
  46. 46.
    P. V. Danckwerts, Gas-liquid Reactions, McGraw-Hill, New York (1970).Google Scholar
  47. 47.
    R. Higbie, Trans. Am. Ins. Chem. Eng., 31, 365 (1935).Google Scholar
  48. 48.
    Y. Zhou, C. Fang, Y. Fang and F. Zhu, Chin. J. Chem. Eng., 21, 1048 (2013).CrossRefGoogle Scholar
  49. 49.
    J. G. Speight, Lange’s Handbook of Chemistry, 16th Ed., McGraw-Hill, New York (2005).Google Scholar
  50. 50.
    B. E. Poling, J. M. Prausnitz and J. P. O’Connell, The Properties of Gases and Liquids, 5th Ed., McGraw-Hill, New York (2004).Google Scholar
  51. 51.
    G. F. Versteeg and W. P. M. Van Swaaij, J. Chem. Eng. Data, 33, 29 (1988).CrossRefGoogle Scholar
  52. 52.
    C. R. Cloutier, A. Alfantazi and E. Gyenge, Adv. Mat. Res., 15–17, 267 (2007).Google Scholar
  53. 53.
    C. Hermann and A. Schumpe, AIChE J., 42, 298 (1996).CrossRefGoogle Scholar
  54. 54.
    A. Schumpe and W. D. Deckwer, Biotechnol. Bioeng., 21, 1075 (1979).CrossRefGoogle Scholar
  55. 55.
    S. E. Licht and R. H. Weiland, Density and physical solubility of carbon dioxide in partial loaded solution of MEA, DEA and MDEA and their blends, Presented at the Spring National Meeting, American Institute of Chemical Engineers, Paper no. 57f, Houston, Texas (1989).Google Scholar
  56. 56.
    H. Dang and G. T. Rochelle, Sep. Sci. Technol., 38, 337 (2003).CrossRefGoogle Scholar
  57. 57.
    G. Astarita, Mass Transfer with Chemical Reactions, Elsevier, Amsterdam (1967).Google Scholar
  58. 58.
    K. T. Putta, F. A. Tobiesen, H. F. Svendsen and H. K. Knuutila, Appl. Energy, 206, 765 (2017).CrossRefGoogle Scholar
  59. 59.
    M. Krau and R. Rzehak, Chem. Eng. Sci., 166, 193 (2017).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Duygu Uysal Zıraman
    • 1
  • Özkan Murat Doğan
    • 1
  • Bekir Zühtü Uysal
    • 1
  1. 1.Department of Chemical Engineering and Clean Energy Research and Application Center (CERAC-TEMENAR)Gazi UniversityMaltepe, AnkaraTurkey

Personalised recommendations