Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 8, pp 1735–1740 | Cite as

A visible-light-active BiFeO3/ZnS nanocomposite for photocatalytic conversion of greenhouse gases

  • Nasim Bagvand
  • Shahram Sharifnia
  • Elham Karamian
Materials (Organic, Inorganic, Electronic, Thin Films)

Abstract

Given the changes in environmental conditions in the world, photocatalytic conversion of greenhouse gases is of great interest today. Our aim was to increase the photocatalytic efficiency of BiFeO3/ZnS (p-n heterojunction photocatalyst) by varying the molar ratio of ZnS to perovskite structure of BiFeO3 using hydrothermal synthesis. The results of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), FT-IR spectroscopy showed the small crystal size and suitable distribution of ZnS particles on the BiFeO3 structure. The results of UV-visible, and photoluminescence (PL) spectroscopy analyses showed the good behavior of p-n heterostructure in absorption of visible light and lowering electron-hole recombination. The best visible light photocatalytic efficiency of CO2 reduction, 24.8%, was obtained by an equimolar ratio of BiFeO3/ZnS.

Keywords

Photocatalytic Conversion Greenhouse Gases p-n Heterojunction BiFeO3 Perovskite ZnS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Chang, J. Zheng, M.A. Gondal and G. Ji, Res. Chem. Intermed., 41(2), 739 (2015).CrossRefGoogle Scholar
  2. 2.
    H. Rodhe, Science, 248, 1217 (1990).CrossRefGoogle Scholar
  3. 3.
    Y. Im, J. H. Lee and M. Kang, Korean J. Chem. Eng., 34(6), 1669 (2017).CrossRefGoogle Scholar
  4. 4.
    W. Subramonian, T.Y. Wu and S.-P. Chai, J. Environ. Manage., 187, 298 (2017).CrossRefGoogle Scholar
  5. 5.
    C. Y. Teh, T. Y. Wu and J. C. Juan, Chem. Eng. J., 317, 586 (2017).CrossRefGoogle Scholar
  6. 6.
    Z. Qin, H. Tian, T. Su, H. Ji and Z. Guo, RSC Adv., 6, 52665 (2016).CrossRefGoogle Scholar
  7. 7.
    N. Nuraje and K. Su, Nanoscale, 5, 8752 (2013).CrossRefGoogle Scholar
  8. 8.
    J.K. Kim, S. S. Kim and W. J. Kim, Mater. Lett., 59, 4006 (2005).CrossRefGoogle Scholar
  9. 9.
    T. Gao, Z. Chen, Y. Zhu, F. Niu, Q. Huang, L. Qin, X. Sun and Y. Huang, Mater. Res. Bull., 59, 6 (2014).CrossRefGoogle Scholar
  10. 10.
    T. Baran, S. Wojtyla, A. Dibebedetto, M. Aresta and W. Macyk, Appl. Catal. B, 178, 170 (2015).CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, A. M. Schultz, P. A. Salvador and G. S. Rohrer, J. Mater. Chem., 21, 4168 (2011).CrossRefGoogle Scholar
  12. 12.
    W. Ramadan, P. A. Shaikh, S. Ebrahim, A. Ramadan, B. Hannoyer, S. Jouen, X. Sauvage and S. Ogale, J. Nanopart. Res., 15, 1848 (2013).CrossRefGoogle Scholar
  13. 13.
    S. Kaur, S. Sharma and S. K. Kansal, Superlat. Microstruct., 98, 86 (2016).CrossRefGoogle Scholar
  14. 14.
    L. Kashinath, K. Namratha and K. Byrappa, J. Alloy. Compoun., 695, 799 (2017).CrossRefGoogle Scholar
  15. 15.
    W. Ramadan, P. A. Shaikh, S. Ebrahim, A. Ramadan, B. Hannoyer, S. Jouen, X. Sauvage and S. Ogale, J. Nanopartic. Res., 15, 1848 (2013).CrossRefGoogle Scholar
  16. 16.
    P. Iranmanesh, S. Saeednia and M. Nourzpoor, Chin. Phys. B, 24(4), 046104 (2015).CrossRefGoogle Scholar
  17. 17.
    B. Matovic, J. Pantic, J. Lukovic, M. Cebela, S. Dmitrovic, M. Mirkovic and M. Prekajski, Ceram. Int., 42, 615 (2016).CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, A. Zheng, X. Yang, H. He, Y. Fan and C. Yao, Cryst. Eng. Comm., 14, 8432 (2012).CrossRefGoogle Scholar
  19. 19.
    K.K. Som, S. Molla, K. Bose and B.K. Chaudhuri, Phys. Rev. B, 45, 4 (1992).CrossRefGoogle Scholar
  20. 20.
    G. S. Lotey and N.K. Verma, Mater. Sci. Semiconduc. Proces., 21, 206 (2014).CrossRefGoogle Scholar
  21. 21.
    M. Cebela, D. Zagorac, K. Batalovic, J. Radakovic, B. Stojadinovic, V. Spasojevic and R. Hercigonja, Ceram. Int., 43, 1256 (2017).CrossRefGoogle Scholar
  22. 22.
    R. Yousefi, B. Kamaluddin, M. Ghoranneviss and F. Hajakbari, Appl. Surf. Sci., 255, 6985 (2009).CrossRefGoogle Scholar
  23. 23.
    T. Soga, Nanostructured materials for solar energy conversion, Elsevier. 1st Ed. (2006).Google Scholar
  24. 24.
    L. Li, P. A. Salvador and G. S. Rohre, Nanoscale, 6, 24 (2014).CrossRefGoogle Scholar
  25. 25.
    N. Yazdanpour and S. Sharifnia, Sol. Energy Mater. Sol. Cells, 118, 1 (2013).CrossRefGoogle Scholar
  26. 26.
    G. Mahmodi, S. Sharifnia, M. Madani and V. Vatanpour, Solar Energy, 97, 186 (2013).CrossRefGoogle Scholar
  27. 27.
    M. Torabi Merajin, S. Sharifnia, S. N. Hosseini and N. Yazdanpour, J. Taiwan Inst. Chem. Eng., 44, 239 (2013).CrossRefGoogle Scholar
  28. 28.
    E. Karamian and S. Sharifnia, J. CO2 Util., 16, 194 (2016).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Nasim Bagvand
    • 1
  • Shahram Sharifnia
    • 1
  • Elham Karamian
    • 1
  1. 1.Catal. Res. Cen., Chem. Eng. DepartmentRazi UniversityKermanshahIran

Personalised recommendations