Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 8, pp 1756–1763 | Cite as

Preparation of graphene aerogel-poly(3,4-ethylenedioxythiophene) conductive composite by using simultaneous co-vaporized vapor phase polymerization

  • Kerguelen Mae Nodora
  • Jin-Heong Yim
Polymer, Industrial Chemistry
  • 53 Downloads

Abstract

We prepared spherical reduced graphene oxide aerogels (rGOA) through freeze casting and thermal reduction for the fabrication of carbon-conducting polymer composites with excellent electrical and mechanical properties. The rGOA-poly(3,4-ethylenedioxythiophene) (PEDOT) or rGOA-PEDOT-SiO2 composites were prepared by simultaneous co-vaporized vapor phase polymerization (SC-VPP). The rGOA spherical particles, prepared by freeze casting of GO solution, had a radially oriented pore structure at the center of its cross section and increasing density of GO sheet towards its center because the temperature gradient of the droplet of the GO solution rapidly freezes from the water outside the droplet during the process. The morphology of the rGOA-PEDOT-SiO2 composites prepared using SCVPP was more spherical compared to rGOA-PEDOT composites, and the orientation of the cross-pore structure was well-developed. Moreover, micrometer-sized conductive PEDOT-SiO2 hybrid spheres could be formed on the composite’s surface by controlling the amount of FTS oxidant. The rGOA-PEDOT-SiO2 composites showed lower resistance values and higher current densities at the same voltage than rGOA or rGOA-PEDOT composites. This can be attributed to the surface area of the particle’s surface, which is enlarged due to the presence of the microspheres, which can cause the widening of the contact area with the electrode to facilitate better electron migration.

Keywords

Conducting Polymer PEDOT Graphene Aerogel Simultaneous Co-vaporized Vapor Phase Polymerization Electrical Property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 22, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).CrossRefPubMedGoogle Scholar
  3. 3.
    W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).CrossRefGoogle Scholar
  4. 4.
    L.-C. Tang, Y.-J. Wa, D. Yan, Y.-B. Pei, L. Zhao, Y.-B. Li, L.-B. Wu, J.-X. Jiang and G.-Q. Lai, Carbon, 60, 16 (2013).CrossRefGoogle Scholar
  5. 5.
    A. O’Neill, U. Khan, P.N. Nirmalraj, J. Boland and J.N. Coleman, J. Phys. Chem. C, 115, 5422 (2011).CrossRefGoogle Scholar
  6. 6.
    L. Guardia, M. J. Fernández-Merino, J. I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso and J. M.D. Tascón, Carbon, 49(5), 1653 (2011).CrossRefGoogle Scholar
  7. 7.
    Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei and H.-M. Cheng, Nat. Mater., 10, 424 (2011).CrossRefPubMedGoogle Scholar
  8. 8.
    M. A. Worsley, P. J. Pauzauskie, T.Y. Olson, J. Biener, J. H. Satcher Jr. and T. F. Baumann, J. Am. Chem. Soc., 132(40), 14067 (2010).CrossRefPubMedGoogle Scholar
  9. 9.
    H. Hu, Z. Zhao, W. Wan, Y. Gogotsi and J. Qiu, Adv. Mater., 25, 2219 (2013).CrossRefPubMedGoogle Scholar
  10. 10.
    S. Kabiri, D. N. H. Tran, T. Altalhi and D. Losic, Carbon, 80, 523 (2014).CrossRefGoogle Scholar
  11. 11.
    S. Bose, T. Kuila, A. K. Mishra, R. Rajasekar, N. H. Kim and J. H. Lee, J. Mater. Chem., 22, 767 (2012).CrossRefGoogle Scholar
  12. 12.
    A. Ouyang, C. Wang, S. Wu, E. Shi, W. Zhao, A. Cao and D. Wu, ACS Appl. Mater. Inter., 7, 14439 (2015).CrossRefGoogle Scholar
  13. 13.
    H. Sun, Z. Xu and C. Gao, Adv. Mater., 25, 2554 (2013).CrossRefPubMedGoogle Scholar
  14. 14.
    Y. Zhao, J. Liu, Y. Hu, H. Cheng, C. Hu, C. Jiang, L. Jiang, A. Cao and L. Qu, Adv. Mater., 25, 591 (2013).CrossRefPubMedGoogle Scholar
  15. 15.
    Q. Zhou, Y. Li, L. Huang, C. Li and G. Shi, J. Mater. Chem. A, 2, 17489 (2014).CrossRefGoogle Scholar
  16. 16.
    C.K. Ching, C.R. Fincher, Y.W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).CrossRefGoogle Scholar
  17. 17.
    A. Ouyang, A. Cao, S. Hu, Y. Li, R. Xu, J. Wei, H. Zhu and D. Wu, ACS Appl. Mater. Inter., 8, 11179 (2016).CrossRefGoogle Scholar
  18. 18.
    Y. Wei, J.-M. Yeh, D. Jin, X. Jia, J. Wang, G.-W. Jang, C. Chen and R.W. Gumbs, Chem. Mater., 7, 969 (1995).CrossRefGoogle Scholar
  19. 19.
    A.G. Sommers, World Patent, WO 99/58464 (1998).Google Scholar
  20. 20.
    Y.-H. Han, J. Travas-Sejdic, B. Wright and J.-H. Yim, Macromol. Chem. Phys., 212, 521 (2011).CrossRefGoogle Scholar
  21. 21.
    J.-H. Yim, Compo. Sci. Technol., 86, 45 (2013).CrossRefGoogle Scholar
  22. 22.
    R. Khadka and J.-H. Yim, Macromol. Res., 23, 559 (2015).CrossRefGoogle Scholar
  23. 23.
    Y. S. Ko and J.-H. Yim, Polymer, 93, 167 (2016).CrossRefGoogle Scholar
  24. 24.
    S.W. Kim, S.W. Lee, J. Kim, J.-H. Yim and K.Y. Cho, Polymer, 102 127 (2016).CrossRefGoogle Scholar
  25. 25.
    J. S. Choi, J. S. Park, B. Kim, B.-T. Lee and J.-H. Yim, Polymer, 120, 95 (2017).CrossRefGoogle Scholar
  26. 26.
    J. Ahn, S. Yoon, S. G. Jung, J.-H. Yim and K.Y. Cho, J. Mater. Chem. A., 5, 21214 (2017).CrossRefGoogle Scholar
  27. 27.
    J. Lock, S. Im and K. Gleason, Macromolecules, 39, 5326 (2006).CrossRefGoogle Scholar
  28. 28.
    S.G. Im and K. K. Gleason, Macromolecules, 40, 6552 (2007).CrossRefGoogle Scholar
  29. 29.
    A. Asatekin, M. C. Barr, S. H. Baxamura, K. K. S. Lau, W. Tenhaeff, J. Xu and K. K. Gleason, Mater. Today, 13(5), 26 (2010).CrossRefGoogle Scholar
  30. 30.
    S. Deville, E. Saiz, E.R. K. Nalla and A. P. Tomsia, Science, 311, 515 (2006).CrossRefPubMedGoogle Scholar
  31. 31.
    A. Ouyang and J. Liang, RSC Adv., 4, 25835 (2014).CrossRefGoogle Scholar
  32. 32.
    M. Klotz, I. Amirouche, C. Guizard, C. Viazzi and S. Deville, Adv. Eng. Mater., 14, 1123 (2012).CrossRefGoogle Scholar
  33. 33.
    S. G. Jung, K.Y. Cho and J.-H. Yim, J. Ind. Eng. Chem., 63, 95 (2018).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Division of Advanced Materials EngineeringKongju National UniversitySeobuk-gu, Cheonan-si, ChungnamKorea

Personalised recommendations